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Summary. We construct a scalable overlapping Additive Schwarz-Richardson (ASR)
algorithm for monotone nonlinear parabolic problems and we prove that the rate of
convergence depends on the stable decomposition constant. Numerical experiments
in the plane confirm the theoretical results.

1 Introduction

In the past decade, domain decomposition techniques have been increasingly em-
ployed to solve nonlinear problems. As a first approach, domain decomposition meth-
ods provide preconditioners for the Jacobian system in a Newton iteration. In this
context, Schwarz-type preconditioners have been successfully used to solve problems
from various applied fields, e.g. computational fluid dynamics [4, 7], full potential
problems [3], cardiac electrical activity [9], unsteady nonlinear radiation diffusion
[11]. Additive Schwarz-type methods have been used not only as inner iteration in
a Newton-Krylov-Schwarz scheme, but also as outer iteration in nested solvers as
ASPIN [5, 1] or nonlinear additive Schwarz [6]. We propose an iterative process
based on the additive Schwarz algorithm applied to the nonlinear problem. The
main idea of this paper can be traced back to [2], where a linear preconditioner for
a nonlinear system arising from the discretization of a monotone elliptic problem is
studied. Using the classical assumptions of the abstract theory of additive Schwarz
methods (stable decomposition, strengthened Cauchy-Schwarz inequality and local
stability, see [12]), we prove that the rate of convergence of the proposed algorithm
depends on the stable decomposition constant C0 and we construct a scalable Ad-
ditive Schwarz-Richardson (ASR) method.

∗ This work was supported by Istituto Nazionale di Alta Matematica Francesco
Severi, Roma and by grants of M.I.U.R (PRIN 2004014411).
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2 Nonlinear Parabolic Problems

Let V be a Banach space and H a Hilbert space with a scalar product (·, ·) satisfying
V ⊂ H and V dense in H. Let V ∗ denote the dual space of V and
< ·, · > the duality between V ∗ and V. The Riesz representation theorem and the
density of V in H implies that for every u ∈ H there exists an unique element in the
dual space V ∗, by convention still denoted by u, such that (u, v) =< u, v > ∀ v ∈ V.
Let Ω be a bounded domain of Rd, d = 2, 3 with the boundary ∂Ω polyhedral and
Lipschitz continuous and Th a triangulation of the domain Ω. In the following, we
restrict to the case V = {v ∈ H1(Ω) : γv = 0 on Γ1 ⊂ ∂Ω, µ(Γ1) > 0} and
H = L2(Ω). We consider the nonlinear form b : H1(Ω) × H1(Ω) −→ R satisfying
the following properties:

1. b is Lipschitz continuous:
∃L > 0 ∀v, w, z ∈ H1(Ω) |b(v, z)− b(w, z)| ≤ L||v − w|| · ||z||

2. b is bounded:
∃C > 0 such that |b(v, w)| ≤ C(1 + ||v||)||w||, ∀v, w ∈ H1(Ω)

3. b is hemicontinuous:
∀u, v, w ∈ H1(Ω), f : [0, 1] −→ R, f(α) = b(u+ αv,w) is continuous

4. b is strictly monotone: b(v, v − w)− b(w, v − w) ≥ 0, ∀v, w ∈ H1(Ω)
and the equality holds only for v = w

5. b

(
v,

n∑
i=1

αiwi

)
=

n∑
i=1

αib(v, wi) ∀v, wi ∈ H1(Ω), ∀αi ∈ R, i = 1, . . . , n

6. b(v, v) ≥ c||v||2H1(Ω) − c0||v||1 − c1||v||2L2(Ω) − c2, ∀v ∈ H1(Ω),
where c > 0, c0 > 0, c1 ≥ 0, c2 ≥ 0 are constants.

We consider the following nonlinear parabolic problem: given u0 ∈ L2(Ω) and f ∈
L2((0, T );V ∗) find u ∈W ≡ {u ∈ L2((0, T );V ), u′ ∈ L2((0, T );V ∗)} such that

{
< u′(t), w > +b(u(t), w) =< f(t), v >, ∀t ∈ (0, T ) \ Ew, ∀w ∈ V
u(0) = u0

(1)

where Ew ⊂ (0, T ) is a set of measure zero that depends on the function w.
The continuous problem (1) is discretized in time by the backward Euler method
and in space by the finite element method. Consequently, we obtain the fully discrete
problem: given an arbitrary sequence {u0

h} ⊂ L2(Ω) of approximations of u0 such
that lim

h→0
||u0

h − u0|| = 0, find umh ∈ Vh such that

(
umh − um−1

h

τ
, v

)
+ b(umh , v) =< fm, v >, ∀v ∈ Vh (2)

where Vh = {v| v = 0 on Γ 1, v is continuous on Ω, v|T is linear ∀T ∈ Th} is the
standard piecewise linear finite element space, τ = T/M and umh is the value of the
discrete function uh at time tm = mτ.
Results on the existence and uniqueness of the solution of the discrete and con-
tinuous parabolic problems can be found e.g. in [13], Theorem 45.3 and Theorem
46.4, respectively. The convergence of the discrete solution to the continuous one is
presented in [13], Theorem 46.4 and 47.1.
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3 An Additive Schwarz-Richardson Algorithm

Given a finite element basis {φj , j = 1, . . . , n} of Vh, for simplicity, we will drop the
indexes h and m and still denote by u both the finite element approximation u =
n∑
j=1

ujφj of the continuous solution and its vector representation u = (u1, . . . , un)T .

Problem (2) is equivalent to the nonlinear algebraic system

B(u) = ĝ, (3)

where B(u) = (b1, . . . , bn)T , bj = (u, φj) + τb(u, φj), ĝ = (g1, . . . , gn)T , gj = τ ·
< fm, φj > +(um−1

h , φj). We consider a family of subspaces Vi ⊂ Vh, i = 0, . . . , N
and the interpolation operators RTi : Vi −→ Vh.
We assume that Vh admits the following decomposition:

Vh =
N∑

i=0

RTi Vi.

In addition to the previous properties (1-6), we also assume the following property
(verified in most reaction-diffusion problems in applications):

7. b can be written as a sum b(u, v) = a(u, v) + b̃(u, v) of a bilinear, continuous
and coercive form a : V × V −→ R and a nonlinear form b̃ (that is monotone
and Lipschitz continuous with constant L̃ due to 1. and 4.).

The bilinear form aτ (u, v) = (u, v) + τa(u, v) defines a scalar product on V. We
introduce the local symmetric, positive definite bilinear forms ãτ, i : Vi × Vi −→ R

and, as in the abstract Schwarz theory [12], we make the following assumptions:

• Stable Decomposition. There exist a constant C0, such that every u ∈ Vh admits

a decomposition u =
N∑
i=0

RTi ui, ui ∈ Vi, i = 0, . . . , N that satisfies

N∑

i=0

ãτ,i(ui, ui) ≤ C2
0aτ (u, u);

• Strengthened Cauchy-Schwarz inequality. ∃ ǫij ∈ [0, 1] i, j = 1, . . . , N, s.t.

|aτ (RTi ui, R
T
j uj)| ≤ ǫijaτ (RTi ui, R

T
i ui)

1/2aτ (RTj uj , R
T
j uj)

1/2, ∀ui ∈ Vi, uj ∈ Vj ;
• Local Stability. There is ω > 0, such that

aτ (RTi ui, R
T
i ui) ≤ ωãτ,i(ui, ui), ∀ui ∈ Vi, 0 ≤ i ≤ N.

We define the “projection”-like operators Q̃i : Vh −→ Vi by ãτ,i(Q̃i(u), vi) =
(u,RTi vi) + τb(u,RTi vi), ∀vi ∈ Vi, u ∈ Vh, their extensions Qi : Vh −→ RTi Vi ⊂ Vh

by Qi(u) = RTi Q̃i(u) and Q(u) =
N∑
i=0

Qi(u).

Let Ãτ,i ≡ (ãτ,i(φj , φl))j,l be the matrix representation of the local bilinear form
ãτ,i. The matrix form of Q(u) is

Q(u) =M−1B(u), (4)
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where M =

(
N∑
i=0

RTi Ã
−1
τ,iRi

)−1

. The matrix M is symmetric and positive definite

and consequently it defines a norm, ||u||2M = uTMu. Denoting ǧ = M−1ĝ, and
using the matrix form of the nonlinear operator Q, it is straightforward to prove
that the nonlinear system (3) is equivalent to the system

Q(u) = ǧ. (5)

Additive Schwarz-Richardson (ASR) algorithm: for a fixed time t and for a
properly chosen parameter λ, iterate for k = 0, 1, . . . until convergence

uk+1 = uk + λsk, (6)

where sk = −M−1
(
B(uk)− ĝ

)
⇐⇒ sk = −

(
Q(uk)− ǧ

)
.

The operator Q satisfies the following Lemmas (for complete proofs see [8]).

Lemma 1. There exists a positive constant δ0 = 1
C2

0
such that

(Q(u+ z)−Q(u), z)M ≥ δ0||z||2M ∀u, v ∈ Vh.

Lemma 2. There exists a positive constant δ1 = C
√
ω3(1 + ρ(ǫ))3(1 + L̃)2C2

0 ,
where C is a positive constant independent of mesh size or time-step, such that

||Q(u+ z)−Q(u)||M ≤ δ1||z||M ∀u, v ∈ Vh.

Using this lemmas, we can prove the following convergence result.

Theorem 1. If we choose 0 < λ < 2δ0/δ
2
1 then ASR converges in the M norm to

the solution u∗ of (5), i.e.

||uk − u∗||2M ≤ P (λ)k||u0 − u∗||2M,
where P (λ) = 1− 2λδ0 + λ2δ21 .

Proof. We define the error ek = uk − u∗ and the residual rk = Q(uk)−Q(u∗). The
error of the k + 1 step of the ASR-iteration can be expressed in terms of the error
and residual at the k step:

ek+1 = uk+1 − u∗ = uk − λrk − u∗ = ek − λrk.

Using the linearity of (·, ·)M :

||ek+1||2M = (ek+1, ek+1)M = (ek − λrk, ek − λrk)M

= ||ek||2M − 2λ(ek, rk)M + λ2||rk||2M.

Lemma 1 implies:

−(ek, rk)M = −(uk − u∗, Q(uk)−Q(u∗))M

= −(uk − u∗, Q(uk − u∗ + u∗)−Q(u∗))M

≤ −δ0||ek||2M.
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From Lemma 2 we have

||rk||2M = ||Q(uk)−Q(u∗)||2M = ||Q(uk − u∗ + u∗)−Q(u∗)||2M ≤ δ21 ||ek||2M,

hence
||ek+1||2M ≤ (1− 2λδ0 + λ2δ21)||ek||2M.

We define P (λ) = 1 − 2λδ0 + λ2δ21 . If we choose 0 < λ < 2δ0
δ21

then P (λ) < 1 and

the convergence holds. We remark that P (λ) has its minimum in λmin = δ0
δ21

and

P (λmin) = 1− δ20
δ21
< 1.

Remark 1. If we drop the coarse space V0 and we define Q(u) =
N∑
i=1

Qi(u), the

ASR-algorithm is convergent. In this case, it is possible to prove that δ0 = 1
C2

0
and

δ1 = C0ρ(ǫ)ω(1 + L̃).

Remark 2. The algorithm depends on the choice of the parameter λ. Numerical tests
have shown that the step-length selection described in [10] performs well.

4 Numerical Results

We consider the variational nonlinear parabolic problem: given u(t0, x) = u0(x) and
T > t0, for all t ≤ T find u(t) ∈ H1

0 (Ω) such that

(
∂u(t)

∂t
, v

)
+ a(u(t), v) + (f(u(t)), v) = (g, v) ∀v ∈ H1

0 (Ω),

where

a(u, v) =

∫

Ω

∑

i,j

aij
∂u

∂xi

∂v

∂xj
dx,

with aij ∈ C1(Ω) such that aij(x) = aji(x), ∀x ∈ Ω, ∀i, j and f monotone.

Table 1. Scalability of 1-level and 2-level ASR method for fixed overlap size δ = h,
subdomain size H/h = 4 and increasing number of subdomains (and nodes).

λ = 0.4

N
1-level

iter err
2-level

iter err

2× 2 40 6.75e-3 44 6.75e-3

4× 4 70 1.67e-3 37 1.67e-3

6× 6 123 7.44e-4 37 7.44e-4

8× 8 197 4.18e-4 38 4.18e-4

10× 10 293 2.67e-4 38 2.67e-4

12× 12 410 1.85e-4 39 1.85e-4

14× 14 - - 39 1.36e-4

λ : step-length selection

N
1-level

iter err
2-level

iter err

2× 2 25 6.75e-3 24 6.75e-3

4× 4 37 1.67e-3 25 1.67e-3

6× 6 69 7.44e-4 24 7.44e-4

8× 8 117 4.18e-4 24 4.18e-4

10× 10 157 2.67e-4 27 2.67e-4

12× 12 223 1.85e-4 22 1.85e-4

14× 14 - - 25 1.36e-4
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Table 2. Iteration counts and relative errors for fixed overlap size δ = h, mesh size
h = 1/48 and increasing number of subdomains.

λ = 0.4

N
1-level

iter err
2-level

iter err

2× 2 155 1.74e-4 70 1.74e-4

4× 4 192 1.74e-4 58 1.74e-4

6× 6 245 1.74e-4 47 1.74e-4

8× 8 301 1.74e-4 41 1.74e-4

λ : step-length selection

N
1-level

iter err
2-level

iter err

2× 2 86 1.74e-4 43 1.74e-4

4× 4 114 1.74e-4 32 1.74e-4

6× 6 149 1.74e-4 27 1.74e-4

8× 8 - - 23 1.74e-4

The numerical tests were performed for the bilinear form a(u, v) = (∇u,∇v) and the
nonlinear function f(u) = 0.5u+u3. The domain is the unit square Ω = (0, 1)×(0, 1)
and g is chosen so that u∗(t, x) = t sin(πx) sin(πy) is the exact solution. We consider
t0 = 0, u0(x) = 0 and we compute the solution for t = τ = 0.01. The iterations
process is stopped when ||rk||M/||r0||M ≤ 1e − 8 and we denote the relative error
by err = ||u− u∗||l2(Ω)/||u∗||l2(Ω).
Our additive Schwarz preconditioner is build as in the linear case. We partition
the domain Ω into shape regular nonoverlapping subdomains {Ωi, 1 ≤ i ≤ N}
of diameter H defining a shape-regular coarse mesh TH . Each subregion Ωi is
extended to a larger one, Ω′i such that the fine mesh Th gives rise to N local
meshes Th,i, and the partition {Ω′i} satisfies the finite covering assumption [12].
Using the above decomposition, a 1-level method is defined by the local spaces
Vi = {v ∈ H1

0 (Ω′i)| v|T is linear, ∀T ∈ Th,i}, 1 ≤ i ≤ N, and the local bilinear forms
ãτ,i(ui, vi) = aτ (RTi ui, R

T
i vi), ∀ui, vi ∈ Vi, with zero extension interpolation oper-

ators RTi : Vi −→ V, 1 ≤ i ≤ N. We then build a 2-level algorithm by defining the
coarse finite element space V0 = {v ∈ H1

0 (Ω)| v is continuous and v|T is linear, ∀T ∈
TH} and the operator RT0 which interpolates the coarse functions onto the fine mesh.
It can be proved that the stable decomposition constant is

C2
0 = C max{1 +

H

δ
, 1 +

τ

Hδ
} (1-level), C2

0 = C(1 +
H

δ
), (2-level), (7)

where δ measures the width of region Ω′i\Ωi, i.e. the overlap size.

Table 3. Iteration counts and relative errors for fixed mesh size h = 1/48, number
of subdomain N = 2× 2, λ = 0.4 and increasing the overlap size δ

overlap
1-level

iter err
2-level

iter err

h 155 1.74e-4 70 1.74e-4

2h 82 1.74e-4 46 1.74e-4

3h 59 1.74e-4 37 1.74e-4

4h 49 1.74e-4 37 1.74e-4

Table 1 reports the iteration counts and relative errors of our ASR method with fixed
overlap δ = h, increasing the number of nodes and subdomains so that H/h = 4 is
kept fixed (scaled speedup). The parameter λ is fixed at 0.4 (left table) or chosen by
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Table 4. Same as Table 1 but with random right-hand side; λ = 0.4.

N 1-level iter 2-level iter

2× 2 40 42

4× 4 70 38

6× 6 122 38

8× 8 196 38

10× 10 291 41

12× 12 407 42
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Fig. 1. ASR iterations counts as a function of the parameter λ

the step-length strategy of [10] (right table). According to the theory, in the 1-level
case the number of iterations increases, because H decreases to zero while δ and τ are
kept constant in (7). On the other hand, the iteration counts of the 2-level method
remain bounded, because H/δ is kept fixed in (7). The same quantities are reported
in Table 2, keeping now h = 1/48 fixed and increasing the number of subdomains
(standard speedup). Only in the 2-level case the iteration counts improve as the
subdomain size decreases. Table 3 shows that the iteration counts improve with
increasing overlap size, as in the linear case and Table 4 is the same as Table 1 with
λ = 0.4 but with random right-hand size. Finally, Fig. 1 confirms the theoretical
prediction of Theorem 1, showing the ASR iteration counts as a function of the
parameter λ for h = 1/16, N = 2 × 2, δ = h: the ASR convergence rate attains a
minimum inside an interval (0, α), α > 0 and degenerates at the interval endpoints.

Acknowledgement. Thanks are due to Maksymilian Dryja for very helpful comments
and suggestions.
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