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Summary. This paper addresses the challenge of solution verification and accuracy
assessment for computing complex Partial Differential Equation (PDE) model. Our
main target applications are bio-heat transfer and blood flow simulation problems.
However our long term goal is to provide a postprocessing package that can be
attached to any existing numerical simulation package, for example widely used
commercial codes such as ADINA, Ansys, Fluent, Star-CD etc., and provide an a
posteriori error estimate to their simulation.

1 Introduction and Motivation

The problem of accuracy assessment is a necessary step that follows the code ver-
ification step and precedes the code validation step, completing the global task of
providing a reliable virtual experiment tool [5].

Our major goal in this paper is to pursue our work on the design of a new
multilevel method that offer a general framework to do Solution Verification (SV)
efficiently. The standard approach in applied mathematics to handle the problem
of SV is to work on the approximation theory of the PDE. For each specific PDE
problem, the right Finite Element (FE) approximation may provide the correct
a posteriori error estimate. Unfortunately this approach may require a complete
rewriting of an existing CFD code based on Finite Volume (FV) for example and
lack generality.

Our method relies on four main ideas that are (1) the embedding of the problem
of error estimation into an optimum design framework that can extract the best
information from a set of two or three existing numerical results, (2) the resolution
of the problem as much as possible as a (non)linear set of discrete equations to
produce a general tool, and renounce on using the specific approximation theory
used the compute the PDE solution. Since we usually have no access to the detailed
knowledge of the internal structure of the code that produces the numerical solution,
(3) the formulation of a framework that can reuse any a posteriori estimator if they
are available (4) the use of distributed computing (or grid computing) to get a cost
effective SV.
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2 Method

From the applied mathematics point of view, a posteriori estimates have been around
for many years [1, 8]. There is a vast literature on this subject. The main challenge is
still to estimate numerical accuracy on under-resolved grids [5]. As a matter of fact,
in complex modeling, as described in the ASCI project, best grid solutions provided
by our best computing resources are fairly under-resolved at least locally.

We present in this paper an entirely different framework to construct reliable a
posteriori estimates for general PDEs or system of PDEs. Let us first describe the
general concept of our method [2, 3, 7].

2.1 General Concept

We consider a boundary value problem (Ω is a polygonal domain and n = 2 or 3) :

L[u(x)] = f(x), x ∈ Ω ⊂ IRn, u = g on ∂Ω. (1)

We assume that the PDE problem is well posed and has a unique smooth solu-
tion. We consider a finite volume approximation of (1) on a family of meshes M(h)
parametrized by h > 0 a small parameter. The smaller h the finer should be the
discretization. We denote symbolically the corresponding family of linear systems

AhUh = Fh. (2)

Let ph denotes the projection of the continuous solution u onto the mesh M(h).
We assume a priori that (||.|| is a given discrete norm):

||Uh − ph(u)|| → 0, as h → 0, (3)

Let M(h1) and M(h2) be two different meshes used to build two approximations
U1 and U2 of the PDE problem (1). A consistent linear extrapolation formula should
have the form

αU1 + (1− α)U2,

where α is a weight function. In classical Richardson Extrapolation (RE) the α
function is a constant. In our optimized extrapolation method α is an unknown
space dependent function solution of the following optimization problem, where G
is an objective function to be defined:

Pα: Find α ∈ Λ(Ω) ⊂ L∞ such that G(α U1 + (1− α) U2) is minimum.
The Optimized Extrapolated Solution (OES) if it exists, is denoted Ve =

αU1 + (1−α)U2. For computational efficiency, Λ(Ω) should be a finite vector space
of very small dimension compared to the size of matrix Ah defined in (2). The ob-
jective function G might be derived from any existing a posteriori error estimators if
possible. For a number of fluid dynamic methods used in bioengineering such as the
immersed boundary technique, or the chimera technique there is no solid theoreti-
cal framework that can provides such rigorous a posteriori estimators. For complex
bioengineering problems, the fact that there exist a functional space framework to
derive a posteriori estimate is more the exception than the generality. Our ambition
is to provide a numerical estimate on ||Uj − U∞||, j = 1, 2, without computing U∞
effectively. The solution Uj can then be verified assuming (3). The fine mesh M(h∞)
should be set such that it captures all the scales of the continuous solution with the
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level of accuracy required by the application. We have a priori h∞ ≪ h1, h2. Both
coarse grid solutions U1 and U2 must be projected onto M(h∞). We will denote Ũ1

and Ũ2 the corresponding functions. We choose then to minimize the consistency
error for the numerical approximation of (1) on a fine mesh M(h∞). The objective
function is then

G(Uα) = ||Ah∞ Uα − Fh∞ ||, where Uα = α Ũ1 + (1− α) Ũ2. (4)

The choice of the discrete norm should depend on the property of the solution. In
the Least Square Extrapolation (LSE) method [2, 3] we chose the discrete L2 norm.
The choice of the L1 or the L∞ norm provides some useful additional information,
for example, for stiff elliptic problems.

One of the difficulties encountered with a two-level extrapolation method is that
there exists subsets of M(h∞) where Ũ1 and Ũ2 are much closer to each other than
what the expected order of accuracy based on local error analysis should provide.
In such areas, the sensitivity of the extrapolation to the variation of α is very weak
and the problem is ill posed. These subsets should be treated as outliers of the
optimization computation procedure. A potentially more robust procedure consists
of using three levels of grid solution. The optimization problem writes then

Pα,β: Find α, β ∈ Λ(Ω) ⊂ L∞ such that G(α U1 + β U2 + (1− α− β) U3) is
minimum.

We notice that if all Uj , j = 1, . . . , 3, coincide at the same space location there
is either no local convergence or all solutions Uj are exact. In such a situation,
one cannot expect improved local accuracy from any OES. The robustness of OES
should come from the fact that we do not suppose a priori any asymptotic on the
convergence rate of the numerical method as opposed to RE.

Let us assume that the optimization problem Pα or Pα,β has been solved and
that we have computed an optimum solution Ve either from the two levels or three
levels method. We are going to discuss now its application to provide a posteriori
error estimators.

Let us denote Uj to be one of the coarse grid approximations at our disposal.
A global a posteriori estimate of the error ||Uj − ph(u)|| may come in two different
ways. For the sake of simplicity we will assume that G is the L2 norm of the residual
(4).
• First is the recovery method based on the idea that the optimized extrapo-

lated solution is more accurate than the coarse grid solution. Let us denote Ũj the
coarse grid solution projected onto the fine grid M(∞) via a suitable interpolation
procedure. Let us assume that the extrapolated solution is decisively more accurate
than that based on interpolation from the coarse grid solution, namely,

||Ve − ph(u)||2 ≪ ||Ũj − ph(u)||2. (5)

Then ||Ũj −Ve||2 ∼ ||Ũj − ph(u)||2 and ||Ve− Ũ2|| is a good error indicator to assess
the accuracy on U2.

We have seen in our numerical experiments with steady incompressible Navier-
Stokes (NS) solutions that this method may give a good lower bound error estimate.
But we do not know in general if the hypothesis (5) is correct. There is no guarantee
that a smaller residual for Ve than for U2 on the fine grid M(h∞) leads to a smaller
error.
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• Second is a global upper bound that follows from a stability estimate with the
discrete operator. We have

||Ve − U0|| < µ G(Ve), where µ ≥ ||(Ah∞)−1|| ,

where U0 is the fine grid solution.
We conclude then

||Ũ2 − U0||2 < µ G(Ve) + ||Ve − Ũ2||2. (6)

The procedure to derive an estimate for µ uses a combination of standard eigen-
value computation procedures applied to Ahj , j = 1, . . . , 3 and some extrapolation
technique designed for scalar functions.

(6) is a good global a posteriori error estimator provided that

||U0 − ph(u)||2 ≪ ||U0 − Ũ2||2. (7)

One way to test this hypothesis (7) is to measure the sensitivity of the upper
bound (6) with respect to the choice of the fine grid M(h∞). This is a feasible test
because the fine grid solution is never computed in OES. Our verification procedure
checks that ||U0 − U2||2 increases toward an asymptotic limit as M(h∞) gets finer.

The algorithm procedure to construct Ve solution of Pα or Pα,β is straightforward
when the operator is linear and the objective function is the discrete L2 norm of
the residual. Let ei, i = 1, . . . ,m be a set of basis function of Λ(Ω). The solution
process can be decomposed into three steps.
• First, interpolation of the coarse grid solution from M(hj), j = 1, . . . , p to

M(h∞), with p = 2 for the two level method, respectively 3 for the three level
method.
• Second, evaluate the residual R[ei (Ũj − Ũj+1)], i = 1, . . . ,m, j = 1, . . . , p −

1, and R[Ũp] on the fine grid M(h∞).
• Third, the solution of the least square linear algebra problem that has m

unknowns for each weight coefficient α and β used in the extrapolation procedure.
In practice, m is much lower than the number of grid points on any coarse grid used.

We have generalized the LSE method to non-linear elliptic problems via a New-
ton like loop [2, 3]. We have also obtained preliminary results for unsteady parabolic
problems [7]. Most of this work has been done on solutions produced by our own
code on a fairly large variety of linear and nonlinear PDE problems on structured
grids. To apply these techniques on solution produced by commercial code that have
thousands of lines, and work with unstructured grids requires a more general and
abstract approach, that we present in the next section.

2.2 Solution Verification of Off-the-Shelf CFD Code

We propose to generalize our method here to steady, CFD solutions produced by
existing code. The challenge is that in most commercial codes, one cannot rely on the
exact knowledge of the discretization method, neither have access to any information
on the internal structure of the code. What we propose is fundamentally different
than existing methods. We describe in the following the main ideas without seeking
an exact formal mathematical description of a given specific PDE problem.
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Let (E, ||.||E) and (F, ||.||F ) be two normed linear space, G ∈ L(E,F ) be the
operator corresponding to the CFD problem. Further let us denote S ∈ F the input
data of the CFD code and U ∈ E the solution we are looking for.

In practice we look for an approximation of the accuracy of the solution Uh on
the mesh M(h) produced by the code C that operates on the data Sh: C : Sh → Uh.
The objective is still to get an error estimate versus a very fine grid solution U∞
that is never computed, because the cost is prohibitive. We will skip the index h
when it is not essential. The space E, F have (very large) finite dimensions indeed
when they are for the discrete solutions on M(h∞), and discrete data Sh∞ .

We assume that the code C has a procedure that provides the residual, i.e V →
ρ = G(Uh) −G(V ), where V ∈ E, ρ ∈ F. We note that this hypothesis is realistic,
since most of the commercial code offer this feature or either provides a (first order
explicit) time stepping procedure:

Un+1
h − Unh

dt
= G(Unh )− S . (8)

The residual is then ρ =
U1

h−Uh

dt
. We assume that the following problem

G(u) = s, ∀s ∈ B(S, d)

is well posed for s ∈ B(S, d), where B is a ball of center S and diameter d in (F, ||.||F ).
There should exist a unique solution for all data in B(S, d) and the dependency of
the solution on these data is supposed to be smooth enough to use a second order
Taylor expansion.

Let us suppose that G(Uh) ∈ B(S, d), that is

||ρ||F = ||G(Uh)− S||F < d. (9)

We would like to get an error estimate on e = Uh − U∞ = G−1(Uh)−G−1(U∞). A
Taylor expansion writes

G−1(S) = G−1(S + ρ)− (ρ · ∇s)G−1(S + ρ) +
1

2
ρ · [ρ ·R(S)] (10)

where ||R(S)||E ≤ K = sup
s∈B(S,d)

||∇2
sG
−1(s)||E . (11)

Therefore

||e||E ≤ ||ρ||F (||∇sG−1(S + ρ)||E +
K

2
||ρ||F ). (12)

This completely general error estimate point out to two different tasks:
• Task 1: get an accurate upper bound on ||∇SG−1(S + ρ)||
• Task 2: obtain a solution U∞ + e that gives a residual ||ρ|| small enough to

make the estimate useful, i.e. compatible with (9).
Task 2 is the purpose of the OES method, while Task 1 can be achieved by a

perturbation method that can reuse the code.
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2.3 Task 1: Stability Estimate

Let {bEi , i = 1, . . . , N}, (resp., {bFi , i = 1, . . . , N}) be a basis of Eh, (resp., Fh)
and ε ∈ R such that ε = o(1). Let (V ∓i )i=1,...,N , be the family of solutions of the
following problems: G(Uh ∓ εVi) = S + ρ ∓ εbi . We get from finite differences the
approximation

Ch∞ = ||∇SG−1(S + ρ)|| ≈ ||(1

2
(V +
j − V −j ))j=1,...,N ||+O(ε2).

We can get in as similar manner an approximation of the norm of the Hessian
∇2
sG
−1(S + ρ). For ρ small enough, we can verify that the upper bound is given

essentially by:
||e||E � Ch∞ ||ρ||F . (13)

The column vectors V ∓j can be computed with embarrassing parallelism. It is
however unrealistic to compute these solutions that lies on the fine grid M(h∞).

To make this task manageable, we have to reduce the dimension of the problem.
We use the following two observations. While the solution of the CFD problem can
be very much grid dependent, the conditioning number of the problem is in general
much less sensitive to the grid. The idea is then to compute an approximation of
Ch∞ by extrapolation from an estimate of two or three coarse grid computation of
Chj . Further, let us assume that the fine grid M(h∞) is a regular Cartesian grid.

The number of terms to represent accurately the projected solution Ũj , j = 1, . . . , 3
with a spectral expansion or a wavelet approximation at a given accuracy is much
less than the dimension of the coarse grid used in a Finite Element/Finite Volume
computation. We propose to use preferably a grid Mh∞ that has enough regularity to
allow a representation of the solution U∞ with some form of compact representation,
using either trigonometric expansion or wavelets.

The grid Mh∞ may have many more grid points than necessary, and therefore
might not be computationally efficient for a true fine grid computation. But we do
not have to do this computation anyway.

Let us denote Ê and F̂ the spaces corresponding to one of these compact repre-
sentation of the solution and residual. Let (b̂

E/F
j , j = 1, . . . , N̂), be the corresponding

base with N̂ ≪ N.Let qE/F be a mapping E/F → Ê/F̂ , respectively qÊ/F̂ be a map-

ping Ê/F̂ → E/F and let Ĉ : Ŝh → Ûh. To summarize the procedure for Task 1,
The estimate on Ch∞ will be applied to verify the code Ĉ based on the computation
of (V̂ ∓j , j = 1, . . . , N̂) vectors on the coarse grids M(hj), j = 1, . . . , 3 done by the

code Ĉ. We notice that the computation of the vector V̂ ∓j can be done with embar-

rassing parallelism. Further because ε is small the code Ĉ can use as an initial guess
in its iterative process the solution Uh that is hopefully very close to the unknown
Ûh ± V̂ ∓j .

2.4 Task 2: Optimized Extrapolation

We use here an optimized extrapolation method. To reduce the dimension of this
problem we search for the unknown weight functions in a small space that can be de-
scribed either by trigonometric expansion, or wavelet expansion, or possibly spectral
elements. If Ω is the physical domain for the CFD solution, the unknown weight
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function can be search in a square domain (0, 1)2 modulo a change of variables.
As a matter of fact no boundary conditions are required on the unknown weight
functions. Let {θj , j = 1, . . . ,m} be the set of basis function of Λ(Ω).

We look for the solution of the optimization problem in the two level case

Find (αj) ∈ R
m, such that

||G([
∑

j=1,...,m

αjΘj ]Ũ1 + [1−
∑

j=1,...,m

αjΘj ]Ũ2)||F is minimum. (14)

We have a similar formulation for the three level OES. Following the same ar-
gument than before we will rather look for this minimum in F̂ . As shown in [2, 3],
we need a filtering process of the solution to have this minimization process numer-
ically efficient. The postprocessing qF is then useful. We can obtain easily the result
when the weight function is a scalar function. To make this computation robust
we use a response surface methodology [4] that is rather trivial in the scalar case.
This procedure consist to compute a lower order polynomial best fit of the function
||G(αŨ1 + (1− α)Ũ2)|| by sampling α according to the expected convergence order
range of the code. The minimization on α is then done with this polynomial approx-
imation by a standard method. The sampling process is a cumbersome embarrassing
parallel process that can take advantage of a computational grid [6].

3 A Numerical Example

To illustrate the pertinence of our methodology, let us present a Navier-Stokes back
step flow example. The computation is done with ADINA. The ADINA system
is a comprehensive finite element software that enable analysis of structures, fluid
simulations, and fluid flows simulations with structural interactions.

Figure 1 shows an example of an unstructured mesh calculation of the back flow
step problem at Reynolds number 500.

In this simulation, the number of elements are respectively 10347 on the fine
grid G∞, 1260 on the coarse grid G1, and 2630 on the coarse grid G2.

Fig. 1. Coarse mesh for the backstep

The steady solutions are obtained using a transient scheme for the incompressible
Navier-Stokes equation.

For this test case OES outperforms the accuracy of the RE method by one
order of magnitude - see Figure 2. An accurate error estimate is obtained for a
representation of the solution on a 20 × 20 trigonometric expansion - see Figure 3.
Let us conclude this paper with the design of the software that we are developing
as a solution verification system independent of the CFD code.



524 M. Garbey, C. Picard

Fig. 2. Performance of LSE and Richardson Extrapolation.
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4 Scientific Software Design and Conclusion

Our algorithm gives rise to a large set of cumbersome computations that can be
done in parallel with a minimum of synchronization. This is a key feature to make
our SV cost effective. We are developing a network oriented interface that allow our
SV method to be executed remotely on several processing units, using the following
methodology:
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(i) a three-tier client server model architecture: it allows the system to be trans-
parent, the user should not have to worry about technical details, to be open, each
subsystem is open to interaction with the others, and to be scalable, the system
should be easy to modify as the number of resources, users, softwares evolved.

(ii) Portability: to be able to run on UNIX/Linux/Windows platform
(iii) Security in data transfer, because industrial applications as well as compu-

tation on clinical data require that the data be protected.
(iv) Friendly user interface.
Some preliminary result on the performance of our distributed computing system

for SV are reported in [6].
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