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Summary. We briefly review our first results concerning the development of scal-
able BETI based domain decomposition methods adapted to the solution of varia-
tional inequalities such as those describing the equilibrium of a system of bodies in
mutual contact. They exploit classical results on the FETI and BETI domain de-
composition methods for elliptic partial differential equations and our recent results
on quadratic programming. The results of the numerical solution of a semicoercive
model problem are given that are in agreement with the theory and illustrate the
numerical scalability of our algorithm.

1 Introduction

The FETI (Finite Element Tearing and Interconnecting) domain decompo-
sition method proposed by Farhat and Roux turned out to be one of the
most successful methods for a parallel solution of linear problems described
by elliptic partial differential equations and discretized by the finite element
method (see [11]). Its key ingredient is a decomposition of the spatial domain
into non-overlapping subdomains that are “glued” by Lagrange multipliers,
so that, after eliminating the primal variables, the original problem is reduced
to a small, typically equality constrained, quadratic programming problem
that is solved iteratively. The time that is necessary for both the elimination
and iterations can be reduced nearly proportionally to the number of the sub-
domains, so that the algorithm enjoys parallel scalability. Since then, many
preconditioning methods were developed which guarantee also numerical scal-
ability of the FETI methods (see, e.g., [15]). Recently Steinbach and Langer
(see [13]) adapted the FETI method to the solution of problems discretized
by the boundary element method. They coined their new BETI (Boundary
Element Tearing and Interconnecting) method and proved its numerical scal-
ability.

The FETI based results were recently extended to the solution of elliptic
boundary variational inequalities, such as those describing the equilibrium
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of a system of elastic bodies in mutual contact. Using the so-called “natural
coarse grid” introduced by Farhat, Mandel, and Roux (see [10]) and new
algorithms for the solution of special quadratic programming problems (see
[9, 4, 5]), Dostál and Horák modified the basic FETI algorithm and proved its
numerical scalability also for the solution of variational inequalities (see [7]).

The latter algorithms turned out to be effective also for the solution of
problems discretized by boundary elements (see [8, 2, 3]). In this paper, we
review our BETI based algorithm for the solution of variational inequalities
and report our theoretical results that guarantee the scalability of BETI with
a natural coarse grid. Theoretical results are illustrated by numerical experi-
ments.

2 Model Problem and Domain Decomposition

Let us consider the domain Ω = (0, 1) × (0, 1) and let us denote Γc =
{(0, y) : y ∈ [0, 1]} and Γf = ∂Ω \ Γc. Moreover, let f ∈ L2(Ω) satisfy

∫

Ω

f(x) dx < 0 (1)

and g ∈ L2(Γc). We shall look for a sufficiently smooth function u satisfying

−△u = f in Ω,
∂u

∂n
= 0 on Γf (2)

together with the Signorini conditions

u− g ≥ 0,
∂u

∂n
≥ 0,

∂u

∂n
(u− g) = 0 on Γc. (3)

Let us decompose the domain Ω into p non-overlapping subdomains,

Ω =

p⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i 6= j, Γi = ∂Ωi, Γi,j = Γi ∩ Γj , Γs =

p⋃

i=1

Γi.

We assume that each subdomain boundary Γi is Lipschitz, and that for each
subdomain Ωi we have

diamΩi < 1. (4)

We now reformulate the problem (2), (3) as a system of local subproblems

−△ui = f in Ωi, λi =
∂ui

∂n
= 0 on Γi ∩ Γf , (5)

ui − g ≥ 0, λi ≥ 0, λi(ui − g) = 0 on Γi ∩ Γc (6)

together with the so-called transmission conditions
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ui = uj and λi + λj = 0 on Γi,j . (7)

We introduce the local single layer potential operator Vi, the double layer
potential operator Ki, the adjoint double layer potential operator K ′

i, and the
hypersingular boundary integral operator Di defined by

(Viλi)(x) =

∫

Γi

U(x, y)λi(y) dsy, Vi : H−1/2(Γi) 7→ H1/2(Γi),

(Kiui)(x) =

∫

Γi

∂

∂ny
U(x, y)ui(y) dsy, Ki : H1/2(Γi) 7→ H1/2(Γi),

(K ′
iλi)(x) =

∫

Γi

∂

∂nx
U(x, y)λi(y) dsy, K ′

i : H−1/2(Γi) 7→ H−1/2(Γi),

(Diui)(x) = − ∂

∂nx

∫

Γi

∂

∂ny
U(x, y)ui(y) dsy, Di : H1/2(Γi) 7→ H−1/2(Γi),

x ∈ Γi. The function U denotes the fundamental solution of the Laplace
operator in R2 and it is defined by

U(x, y) = − 1

2π
log ‖x− y‖ for x, y ∈ R2.

From the assumption (4) it follows that the operator Vi is H−1/2(Γi)-elliptic,
and therefore its inversion is well-defined. Now let us define the local Dirichlet
to Neumann map as

λi(x) = (Siui)(x) − (Nif)(x), x ∈ Γi,

where Si denotes the local Steklov-Poincaré operator given by

(Siui)(x) =

[
Di + (

1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)

]
ui(x), x ∈ Γi,

and Nif denotes the local Newton potential given by

(Nif)(x) = V −1
i (N0,if) (x), x ∈ Γi,

with (N0,if)(x) =
∫

Ωi
U(x, y)f(y) dy. It can be further shown that the local

Steklov-Poincaré operator Si : H1/2(Γi) 7→ H−1/2(Γi) is bounded, symmetric,
and semi-elliptic on H1/2(Γi). More details on the properties of the Steklov-
Poincaré operator may be found, e.g., in [14].

3 Boundary Variational Formulation and Discretization

The boundary weak formulation of the problem (5), (6), (7) may be equiva-
lently rewritten as the problem of finding u ∈ K =

{
v ∈ H1/2(Γs) : v − g ≥ 0

on Γc} such that
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J (u) = min {J (v) : v ∈ K}, (8)

J (v) =

p∑

i=1

[
1

2

∫

Γi

(Siv|Γi
)(x)v|Γi

(x) dsx −
∫

Γi

(Nif)(x)v|Γi
(x) dsx

]
.

The coercivity of the functional J follows (see [12]) from the condition (1).
We shall now follow the technique of Langer and Steinbach (see [13]). Let us
define the local boundary element space

Zi,h = span
{
ψi

k

}Ni

k=1
⊂ H−1/2(Γi)

to get suitable approximations S̃i and Ñif of Si and Nif . The exact defini-
tions and results on stability can be found, e.g., in [14]. Let us further define
the boundary element space on the skeleton Γs and its restriction on Γi as

Wh = span {ϕm}M0

m=1 ⊂ H1/2(Γs) and Wi,h = span
{
ϕi

m

}Mi

m=1
⊂ H1/2(Γi),

respectively. After the discretization of problem (8) by the Ritz method, we
get the minimization problem

J(u) = min {J(v) : v ∈ RM , BIv ≤ cI , BEv = o}, (9)

J(v) =
1

2
vT S̃v − vT R̃

with M =
∑p

i=1Mi and with a positive semidefinite block diagonal stiffness

matrix S̃. The blocks of S̃ and the relevant blocks of R̃ are given by

S̃i,h = Di,h + (
1

2
Mi,h + Ki,h)T V−1

i,h(
1

2
Mi,h + Ki,h) and

R̃i,h = MT
i,hV−1

i,hN0,i,h,

respectively. The boundary element matrices and the vector N0,i,h are defined
by

Vi,h[l, k] =
〈
Viψ

i
k, ψ

i
l

〉
L2(Γi)

, Mi,h[l, n] =
〈
ϕi

n, ψ
i
l

〉
L2(Γi)

,

Ki,h[l, n] =
〈
Kiϕ

i
n, ψ

i
l

〉
L2(Γi)

, Di,h[m,n] =
〈
Diϕ

i
n, ϕ

i
m

〉
L2(Γi)

,

N0,i,h[l] =
〈
N0,if, ψ

i
l

〉
L2(Γi)

for k, l = 1, . . . , Ni; m, n = 1, . . . ,Mi and i = 1, . . . , p. The inequality con-
straints are associated with the non-penetration condition across Γi∩Γc, while
the equality constraints arise from the continuity condition across the auxil-
iary interfaces Γi,j .

4 Dual Formulation and Natural Coarse Grid

We shall now use the duality theory to replace the general inequality con-
straints by the bound constraints. Let S̃+ be a generalized inverse of S̃ sat-
isfying S̃ = S̃S̃+S̃ and let R be a matrix whose columns span the kernel of
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S̃. By introducing the Lagrange multipliers λI and λE associated with the
inequalities and equalities, respectively, and denoting

λ =
[
λT

I , λT
E

]T
, B =

[
BT

I , BT
E

]T
, and c =

[
cT

I ,o
T
]T
,

we can equivalently replace problem (9) by

Θ(λ) = min {Θ(λ) : λI ≥ o and G̃λ = ẽ}, (10)

Θ(λ) =
1

2
λT Fλ − λT d̃, F = BS̃+BT , d̃ = BS̃+R̃ − c,

G̃ = RT BT , ẽ = RT R̃.

The solution u of (9) then may be evaluated by

u = S̃+(R̃−BT λ) + Rα and α = (RT B̃T B̃R)−1RT B̃T (c̃− B̃S̃+(R̃−BT λ)),

where B̃ = [B̃T
I , BT

E ]T and c̃ = [c̃T
I ,o

T ]T , and the matrix [B̃I , c̃I ] is formed
by the rows of [BI , cI ] corresponding to the positive entries of λI . Now let us

denote by T a regular matrix such that the matrix G = TG̃ has orthonormal
rows. Then (see, e.g., [6]) problem (10) is equivalent to the following problem

Λ(λ) = min {Λ(λ) : λI ≥ −λ̃I and Gλ = o}, (11)

Λ(λ) =
1

2
λT PFPλ − λT Pd, P = I − Q, Q = GT G,

d = d̃ − Fλ̃, λ̃ = GT e, e = Tẽ.

The matrices P and Q are orthogonal projectors on the kernel of G and the
image of GT , respectively, and they define the so-called natural coarse grid.

The key ingredient in the next development is the observation that there
are positive constants C1, C2 such that

C1‖Pλ‖2 ≤ λT PFPλ ≤ C2H/h. (12)

This nontrivial estimate is a corollary of two well-known results. The first one
is the classical estimate of Farhat, Mandel, and Roux (see [10]) which gives
that if FFETI and PFETI denote the matrices arising by an application of
the above procedures to the problem discretized by sufficiently regular finite
element grid with the discretization and decomposition parameters h and H,
respectively, then there are positive constants C3, C4 such that the spectrum
σ(FFETI |ImPFETI) of the restriction of FFETI to ImPFETI satisfies

σ(FFETI |ImPFETI) ⊆ [C3, C4H/h].

The second result is due to Langer and Steinbach, in particular, Lemma 3.3 of
[13] which guarantees that F|ImP is spectrally equivalent to FFETI |ImPFETI .
Combining these two results, it is possible to prove (12). We shall give more
details elsewhere.
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5 Algorithms and Optimality

To solve the bound and equality constrained problem (11), we use our re-
cently proposed algorithms MPRGP by Dostál and Schöberl (see [9]) and
SMALBE (see [4, 5]). The SMALBE, a variant of the augmented Lagrangian
method with adaptive precision control, enforces the equality constraints by
the Lagrange multipliers generated in the outer loop, while auxiliary bound
constrained problems are solved approximately in the inner loop by MPRGP,
an active set based algorithm which uses the conjugate gradient method to
explore the current face, the fixed steplength gradient projection to expand
the active set, the adaptive precision control of auxiliary linear problems, and
the reduced gradient with the optimal steplength to reduce the active set.
The unique feature of SMALBE with the inner loop implemented by MPRGP
when used to (11) is the rate of convergence in bounds on spectrum of the reg-
ular part of the Hessian of Λ (see [5]). Combining this result with the estimate
(12), we get that if H/h is bounded, then there is a bound on the number of
multiplications by the Hessian of Λ that are necessary to find an approximate
solution λh,H of (11) discretized with the decomposition parameter H and
the discretization parameter h which satisfies

‖gP (λh,H)‖ ≤ ε1‖Ph,Hdh,H‖ and ‖Gh,Hλh,H‖ ≤ ε2‖Ph,Hdh,H‖, (13)

where gP denotes the projected gradient, whose nonzero components are those
violating the KKT conditions for (11) (see, e.g., [1]).

6 Numerical Experiment

Let f(x, y) = −1 for (x, y) ∈ Ω and g(0, y) =
√

1/4 − (y − 1/2)2 − 1 for y ∈
[0, 1]. We decompose Ω into identical square subdomains with the side length
H. All subdomain boundaries Γi were further discretized by the same regular
grid with the element size h. The spaces Wi,h and Zi,h were formed by piece-
wise linear and piecewise constant functions, respectively. For the SMALBE
algorithm we used the parameters η = ||Pd||, β = 10, and M = 1. The penalty
parameter ρ0 and the Lagrange multipliers µ0 for the equality constraints were
set to 10 ‖PFP‖ and o, respectively. For the MPRGP algorithm we used pa-

rameters α = ‖PFP + ρkQ‖−1
and Γ = 1. Our initial approximation λ0 was

set to −λ̃. The stopping criterion of the outer loop was chosen as
∥∥gP (λk,µk, ρk)

∥∥ ≤ 10−4 ‖Pd‖ and
∥∥Gλk

∥∥ ≤ 10−4 ‖Pd‖ .
The results of our numerical experiments are given in Table 1. We conclude
that the scalability may be observed in the solution of realistic problems.

7 Comments and Conclusions

We combined the BETI methodology with preconditioning by the “natural
coarse grid” to develop a scalable algorithm for the numerical solution of
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Table 1. Performance with the constant ratio H/h = 32.

h H primal dim. dual dim. outer iter. CG iter.

1/64 1/2 512 197 2 48
1/128 1/4 2048 915 2 58
1/256 1/8 8192 3911 2 52
1/512 1/16 32768 16143 2 45
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Fig. 1. Solution of the model problem with h = 1/256 and H = 1/8. On the right
we emphasize the particular local solutions.

variational inequalities. The algorithm may be used for the solution of both
coercive and semicoercive contact problems. Though we have restricted our
exposition to a model variational inequality, our arguments are valid also for
2D and 3D contact problems of elasticity.
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