
Challenges and Applications of Boundary
Element Domain Decomposition Methods

Olaf Steinbach

Institute of Computational Mathematics, Graz University of Technology,
Steyrergasse 30, 8010 Graz, Austria. o.steinbach@tugraz.at

Summary. Boundary integral equation methods are well suited to represent the
Dirichlet to Neumann maps which are required in the formulation of domain de-
composition methods. Based on the symmetric representation of the local Steklov–
Poincaré operators by a symmetric Galerkin boundary element method, we describe
a stabilized variational formulation for the local Dirichlet to Neumann map. By
a strong coupling of the Neumann data across the interfaces, we obtain a mixed
variational formulation. For biorthogonal basis functions the resulting system is
equivalent to nonredundant finite and boundary element tearing and interconnect-
ing methods. We will also address several open questions, ideas and challenging tasks
in the numerical analysis of boundary element domain decomposition methods, in
the implementation of those algorithms, and their applications.

1 Introduction

Boundary element methods are well established approximation methods to
solve exterior boundary value problems, or to solve partial differential equa-
tions with (piecewise) constant coefficients considered in complicated sub-
structures and in domains with moving boundaries. For a state of the art
overview on recent advances on mathematical aspects and engineering ap-
plications of boundary integral equation methods, see, for example, [15]. For
more general partial differential equations, e.g. with nonlinear coefficients, the
coupling of finite and boundary element methods seems to be an efficient tool
to solve complex problems in complicated domains. For the formulation and
for an efficient solution of the resulting systems of equations, domain decom-
position methods are mandatory.

The classical approach to couple finite and boundary element methods is
to use only the weakly singular boundary integral equation with single and
double layer potentials, see, e.g., [1, 7], and [20]. In [3] a symmetric coupling
of finite and boundary elements using the so–called hypersingular boundary
integral operator was introduced. This approach was then extended to sym-
metric Galerkin boundary element methods, see, e.g., [5]. Appropriate precon-
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ditioned iterative strategies were later considered in [2], while quite general
preconditioners based on operators of the opposite order were introduced in
[18]. Boundary element tearing and interconnecting (BETI) methods were de-
scribed in [10] as counterpart of FETI methods while in [9] these methods were
combined with a fast multipole approximation of the local boundary integral
operators involved. For an alternative approach to boundary integral domain
decomposition methods see also [8].

Here we will give a quite general setting of tearing and interconnecting, or
more general, hybrid domain decomposition methods. The local partial differ-
ential equation is rewritten as a local Dirichlet to Neumann map which can
be realized either by domain variational formulations or by using boundary
integral formulations. Since the related function spaces are fractional Sobolev
spaces, one may ask for the right definition of the associated norms. It turns
out that the used norms which are induced by the local single layer potential
or its inverse allows for almost explicit spectral equivalence inequalities, and
an appropriate stabilization of the singular Steklov–Poincaré operators. The
modified Dirichlet to Neumann map is then used to obtain a mixed varia-
tional formulation allowing a weak coupling of the local Dirichlet data. How-
ever, staying with a globally conforming method and using biorthogonal basis
functions we end up with the standard tearing and interconnecting approach
as in FETI and in BETI.

The aim of this paper is to sketch some ideas to obtain advanced formu-
lations in boundary integral domain decomposition methods, to propose to
use special norms in the numerical analysis, and to state some challenging
tasks in the implementation of fast boundary element domain decomposition
algorithms to solve challenging problems from engineering and industry.

2 Boundary Integral Equation DD Methods

As a model problem we consider the Dirichlet boundary value problem of the
potential equation,

−div[α(x)∇u(x)] = f(x) for x ∈ Ω, u(x) = g(x) for x ∈ Γ (1)

where Ω ⊂ R3 is a bounded domain with Lipschitz boundary Γ = ∂Ω. We
assume that there is given a non–overlapping domain decomposition

Ω =

p⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i 6= j, Γi = ∂Ωi. (2)

The domain decomposition as considered in (2) may arise from a piecewise
constant coefficient function α(x) due to the physical model, in particular we
may assume α(x) = αi for x ∈ Ωi. However, to construct efficient solution
strategies in parallel, one may also introduce a domain decomposition (2)
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when considering the Laplace or Poisson equation in a complicated three–
dimensional structure. A challenging task is to find a domain decomposition
(2) which is based on boundary informations only, i.e., without any additional
volume meshes. Using ideas as used in fast boundary element methods, i.e. by
a bisection algorithm it is possible to decompose a given boundary mesh into
two separate surface meshes. While this step seems to be simple, the delicate
task is the definition of the new interface mesh which should take care of the
given geometric situation, i.e. one should avoid the intersection of the new
interface with the original boundary. We have already applied this algorithm
to find a suitable domain decomposition of the Lake St. Wolfgang domain as
shown in Figure 1.

Fig. 1. Domain Decomposition of the Lake St. Wolfgang Domain.

It seems to be an open problem to find and to implement a robust
algorithm for an automatic domain decomposition of complicated three–
dimensional structures which is based on surface informations only. Such a
tool is essentially needed when considering boundary element domain decom-
position methods. Preliminary results on this topic will be published elsewhere
[12]. A similar approach was already used in [6] to design an automatic domain
decomposition approach for unstructured grids in three dimensions. There, the
remeshing of the new interface is done within the splitting hyperplane without
considering the robustness of the algorithm for complicated geometries.

Instead of the global boundary value problem (1) we now consider the
local boundary value problems

−αi∆ui(x) = fi(x) for x ∈ Ωi, ui(x) = g(x) for x ∈ Γi ∩ Γ (3)

together with the transmission boundary conditions

ui(x) = uj(x), αiti(x) + αjtj(x) = 0 for x ∈ Γij = Γi ∩ Γj , (4)

where ti = ni ·∇ui is the exterior normal derivative of ui on Γi. Since the solu-
tion ui of the local boundary value problem (3) is given via the representation
formula
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ui(x) =
1

4π

∫

Γi

ti(y)

|x− y|dsy − 1

4π

∫

Γi

ui(y)
∂

∂ny

1

|x− y|dsy +
1

αi

1

4π

∫

Ωi

fi(y)

|x− y|dy

for x ∈ Ωi, it is sufficient to find the complete Cauchy data [ui, ti]|Γi
which

are related to the solutions ui of the local boundary value problems (3). The
appropriate boundary integral equations to derive a boundary integral repre-
sentation of the involved Dirichlet to Neumann map are given by means of
the Calderon projector

(
ui

ti

)
=

(
1
2I −Ki Vi

Di
1
2I +K ′

i

)(
ui

ti

)
+

1

αi

(
Ñ0fi

Ñ1fi

)
,

where Vi is the single layer potential, Ki is the double layer potential, Di

is the hypersingular boundary integral operator, and Ñjfi are some Newton
potentials, respectively. Hence, we find the Dirichlet to Neumann map as

αiti(x) = αi(Siui)(x) − (Nifi)(x) for x ∈ Γi (5)

with the Steklov–Poincaré operator

(Siui)(x) = V −1
i (

1

2
I +Ki)ui(x) (6)

=

[
Di + (

1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)

]
ui(x) for x ∈ Γi, (7)

and with the local Newton potential

Nifi = V −1
i Ñ0fi = (

1

2
I +K ′

i)V
−1
i Ñ0fi − Ñifi on Γi.

Replacing the partial differential equation in (3) by the related Dirichlet to
Neumann map (5) this results in a coupled formulation to find the local
Cauchy data [ui, ti]|Γi

such that

αiti(x) = αi(Siui)(x) − (Nifi)(x) for x ∈ Γi,
ui(x) = g(x) for x ∈ Γi ∩ Γ,
ui(x) = uj(x) for x ∈ Γij ,

αiti(x) + αjtj(x) = 0 for x ∈ Γij .

(8)

In what follows we first have to analyze the local Steklov–Poincaré operators
Si : H1/2(Γi) → H−1/2(Γi). Since we are dealing with fractional Sobolev
spaces H±1/2(Γi) one may ask for appropriate norms to be used. It turns out
that norms which are induced by the local single layer potentials Vi may be
advantageous. In particular,

‖ · ‖Vi
=
√
〈Vi·, ·〉Γi

, ‖ · ‖V −1
i

=

√
〈V −1

i ·, ·〉Γi
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are equivalent norms in H−1/2(Γi) and in H1/2(Γi), respectively. With the
contraction property of the double layer potential [19],

‖(1

2
I +Ki)vi‖V −1

i
≤ cK,i‖vi‖V −1

i
for all vi ∈ H1/2(Γi) (9)

where the constant

cK,i =
1

2
+

√
1

4
− cDi

1 cVi
1 < 1

is only shape sensitive, we have

‖Sivi‖Vi
= ‖(1

2
I +Ki)vi‖V −1 ≤ cK,i ‖vi‖V −1

i
for all vi ∈ H1/2(Γi)

as well as

〈Sivi, vi〉Γi
≥ (1 − cK,i) ‖vi‖2

V −1
i

for all vi ∈ H1/2(Γi), vi⊥1.

In particular, the constants form the non–trivial kernel of the local Steklov–
Poincaré operators Si, i.e., Si1 = 0 in the sense of H−1/2(Γi). To realize
the related orthogonal splitting of H1/2(Γi) we introduce the natural density
weq,i ∈ H−1/2(Γi) as the unique solution of the local boundary integral equa-
tion Viweq,i = 1. Then we may define the stabilized hypersingular boundary

integral operator S̃i : H1/2(Γi) → H−1/2(Γi) via the Riesz representation
theorem by the bilinear form

〈S̃iui, vi〉Γi
= 〈Siui, vi〉Γi

+ βi〈ui, weq,i〉Γi
〈vi, weq,i〉Γi

, βi ∈ R+. (10)

Theorem 1. Let S̃i : H1/2(Γi) → H−1/2(Γi) be the stabilized Steklov–
Poincaré operator as defined in (10). Then there hold the spectral equivalence
inequalities

cS̃i
1 〈V −1

i vi, vi〉Γi
≤ 〈S̃ivi, vi〉Γi

≤ cS̃i
2 〈V −1

i vi, vi〉Γi

for all vi ∈ H1/2(Γi) with positive constants

cS̃i
1 = min{1 − cK,i, βi〈1, weq,i〉Γi

}, cS̃i
2 = max{cK,i, βi〈1, weq,i〉Γi

}.

Therefore, an optimal scaling is given for

βi =
1

2〈1, weq,i〉Γi

, cS̃i
1 = 1 − cK,i, cS̃i

2 = cK,i.

Hence, the Dirichlet to Neumann map (5) can be written in a modified vari-
ational formulation as

αi〈ti, vi〉Γi
= 〈S̃iũi, vi〉Γi

− 〈Nifi, vi〉Γi
for all vi ∈ H1/2(Γi) (11)
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when assuming the local solvability conditions

αi〈ti, 1〉Γi
+ 〈Nifi, 1〉Γi

= 0 . (12)

In particular, inserting vi = 1 into the modified Dirichlet to Neumann map
(11), we obtain from the solvability condition (12)

0 = αi〈ti, 1〉Γi
+ 〈Nifi, 1〉Γi

= 〈Siũi, 1〉Γi
+ βi〈ũi, weq,i〉Γi

〈1, weq,i〉Γi

and therefore the scaling condition

〈ũi, weq,i〉Γi
= 0 (13)

due to

〈Siũi, 1〉Γi
= 〈ũi, Si1〉Γi

= 0, 〈1, weq,i〉Γi
= 〈1, V −1

i 1〉Γi
> 0.

In fact, the scaling condition (13) is the natural characterization of functions
ũi ∈ H1/2(Γi) which are orthogonal to the constants in the sense ofH−1/2(Γi).
Hence, the local Dirichlet datum is given via

ui = ũi + γi, γi ∈ R.

Now, the coupled formulation (8) can be rewritten as

αiti(x) = αi(S̃iũi)(x) − (Nifi)(x) for x ∈ Γi,
ũi(x) + γi = g(x) for x ∈ Γi ∩ Γ,
ũi(x) + γi = ũj(x) + γj for x ∈ Γij ,

αiti(x) + αjtj(x) = 0 for x ∈ Γij ,
αi〈ti, 1〉Γi

+ 〈Nifi, 1〉Γi
= 0

(14)

where we have to find ũi ∈ H1/2(Γi), ti ∈ H−1/2(Γi), and γi ∈ R, i = 1, . . . , p.
Hereby, the variational formulation of the modified Dirichlet to Neumann map
reads: Find ũi ∈ H1/2(Γi) such that

αi〈S̃iũi, vi〉Γi
− αi〈ti, vi〉Γi

= 〈Nifi, vi〉Γi
(15)

is satisfied for all vi ∈ H1/2(Γi), i = 1, . . . , p. The Neumann transmission
conditions in weak form are

〈αiti + αjtj , vij〉Γij
=

∫

Γij

[αiti(x) + αjtj(x)]vij(x)dsx = 0 (16)

for all vij ∈ H1/2(Γij). Taking the sum over all interfaces Γij , this is equivalent
to

p∑

i=1

αi〈ti, v|Γi
〉Γi\Γ = 0 for all v ∈ H1/2(ΓS), (17)
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where ΓS = ∪p
i=1Γi is the skeleton of the given domain decomposition. The

Dirichlet transmission conditions in (14) can be written as

〈[ũi+γi]−[ũj+γj ], τij〉Γij
= 0 for all τij ∈ H̃−1/2(Γij) = [H1/2(Γij)]

′, (18)

while the Dirichlet boundary conditions in weak form read

〈ũi + γi, τi0〉Γi∩Γ = 〈g, τi0〉Γi∩Γ for all τi0 ∈ H̃−1/2(Γi ∩ Γ ). (19)

In addition we need to have the local solvability conditions

αi〈ti, 1〉Γi
+ 〈Nifi, 1〉Γi

= 0. (20)

The coupled variational formulation (15)–(20) is in fact a mixed (saddle point)
domain decomposition formulation of the original boundary value problem (1).
Hence we have to ensure a certain stability (LBB) condition to be satisfied,
i.e., a stable duality pairing between the primal variables ũi and the dual
Lagrange variable ti along the interfaces Γij . Note that we also have to incor-
porate the additional constraints (20) and their associated Lagrange multipli-
ers γi. While the unique solvability of the continuous variational formulation
(15)–(20) follows in a quite standard way, as, e.g. in [16], the stability of an as-
sociated discrete scheme is not so obvious. Clearly, the Galerkin discretization
of the coupled problem (15)–(20) depends on the local trial spaces to approx-
imate the local Cauchy data [ũ, ti]. In particular, the variational formulation
(15)–(20) may serve as a starting point for Mortar domain decomposition
or three–field formulations as well (see [16] and the references given therein).
However, here we will consider only an approach which is globally conforming.

Let S1
h(ΓS) be a suitable trial space on the skeleton ΓS , e.g., of piecewise

linear basis functions ϕk, k = 1, . . . ,M , and let S1
h(Γi) denote its restriction

onto Γi, where the local basis functions are ϕi
k, k = 1, . . . ,Mi. In particular,

Ai ∈ RMi×M are connectivity matrices linking the global degrees of freedom
u ∈ RM ↔ uh ∈ S1

h(ΓS) to the local ones, ui = Aiu ∈ RMi ↔ uh|Γi
∈ S1

h(Γi).
Moreover, let S0

h(Γij) be some trial space to approximate the local Neumann
data ti and tj along the interface Γij , for example we may use piecewise
constant basis functions ψij

s . In the same way we introduce basis functions
ψ0

s ∈ S0
h(Γ ) to approximate the Neumann data along the Dirichlet boundary

Γ . The trial spaces S0
h(Γij) and S0

h(Γ ) define a global trial space S0
h(ΓS) of

piecewise constant basis functions ψι implying λh ∈ S0
h(ΓS) ↔ λ ∈ RN , i.e.,

we have λh|Γij
∈ S0

h(Γij) ↔ λij ∈ RNij and λh|Γ ∈ S0
h(Γ ) ↔ λ0 ∈ RN0 . For

the global trial space

S0
h(ΓS) =

⋃

i<j

S0
h(Γij) ∪ S0

h(Γ ) = span{ψι}N
ι=0,

we define the restrictions ψij
s = rij

ι ψι with rij
ι = 1, rji

ι = −1 for i < j, and
ψ0

s = r0ιψι, r
0
ι = 1 for x ∈ Γ . Hence we can also introduce a local mapping
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ti =
1

αi
Riλ ∈ RNi for λ ∈ RN

satisfying
Ri[si, ι] = rij

ι = 1, Rj [sj , ι] = rji
ι = −1

for ι = 1, . . . , N, si = 1, . . . , Ni, i < j, and Ri[si, ι] = r0ι = 1 for x ∈ Γ . For
the associated approximations ti,h ∈ S0

h(Γi) ↔ ti ∈ RNi , we then find

αiti,h(x) + αjtj,h(x) = 0 for x ∈ Γij ,

i.e., the Neumann transmission conditions (16) are satisfied in a strong sense.
The Galerkin approximation of the Dirichlet transmission condition (18)

can now be written as

∫

Γij





[
Mi∑

k=1

ũi,kϕ
i
k(x) + γi

]
−




Mj∑

k=1

ũj,kϕ
j
k(x) + γj





ψij

σ (x)dsx = 0

for σ = 1, . . . , Nij , and i < j, or for ι = 1, . . . , N

∫

Γij





[
Mi∑

k=1

ũi,kϕ
i
k(x) + γi

]
rij
ι ψι(x) +




Mj∑

k=1

ũj,kϕ
j
k(x) + γj


 rji

ι ψι(x)dsx



 = 0.

Correspondingly, the Galerkin discretization of the Dirichlet boundary condi-
tion (19) reads

∫

Γi∩Γ

[
Mi∑

k=1

ũi,kϕ
i
k(x) + γi

]
r0ιψι(x)dsx =

∫

Γi∩Γ

g(x)r0ιψι(x)dsx.

Combining both the Galerkin discretization of the Dirichlet transmission and
of the Dirichlet boundary conditions, we can write

p∑

i=1

Biũi +Gγ = g (21)

where Bi ∈ RM×Mi are defined by

Bi[ι, k] =

∫

Γij

ϕi
k(x)rij

ι ψι(x)dsx, Bi[ι, k] =

∫

Γi∩Γ

ϕi
k(x)r0ιψι(x)dsx.

In addition, the matrix G = (G1, . . . , Gp) ∈ RM×p and the vector g ∈ RM of
the right hand side are defined correspondingly, i.e.

Gi[ι, i] =

∫

Γij

rij
ι ψι(x)dsx, Gi[ι, i] =

∫

Γi∩Γi

r0ιψι(x)dsx.
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In particular, we have Gi = Bi1i where 1i ∈ RMi is the coefficient vector
which is related to the constant function 1 ∈ H1/2(Γi). Moreover, from the
solvability conditions (20) we obtain

G⊤
i λ = qi = −〈Nifi, 1〉Γi

for i = 1, . . . , p.

The Galerkin discretization of the local Dirichlet to Neumann map (15) finally
gives

αiS̃i,hũi −B⊤
i λ = f

i
,

where we have to approximate the exact stiffness matrix S̃i,h including the
local Steklov–Poincaré operator Si, e.g., in the symmetric representation (7),
by some boundary element discretization,

S̃i,h = Di,h + (
1

2
M⊤

i,h +K⊤
i,h)V −1

i,h (
1

2
Mi,h +Ki,h) + βiaia

⊤
i ,

where the local boundary element matrices are given as

Di,h[ℓ, k] = 〈Diϕ
i
k, ϕ

i
ℓ〉Γi

, Ki,h[ν, k] = 〈Kiϕ
i
k, ϑ

i
ν〉Γi

,

Vi,h[ν, µ] = 〈Viϑ
i
µ, ϑ

i
ν〉Γi

, Mi,h[ν, k] = 〈ϕi
k, ϑ

i
ν〉Γi

, ai,k = 〈ϕi
k, weq,i〉Γi

for k, ℓ = 1, . . . ,Mi, µ, ν = 1, . . . , N̄i where span{ϑi
µ}N̄i

µ=1 ⊂ H−1/2(Γi) is some
local boundary element trial space to approximate the local Neumann data
which are needed in the definition of the approximate Steklov–Poincaré oper-
ator. Note that the basis functions ϑi

µ can be defined in an almost arbitrary
way, we only have to assume some approximation property to ensure conver-
gence of the discrete scheme. The simplest choice would be to identify the
basis functions ϑi

µ with ψij
s which are defined along the skeleton. In an analo-

gous manner, one may even define an approximate Steklov–Poincaré operator
by using local finite elements, see, e.g., [11]. Summarizing the above, we end
up with a global system of linear equations,




α1S̃1,h −B⊤
1

. . .
...

αpS̃p,h −B⊤
p

B1 · · · Bp G
G⊤







ũ1
...
ũp

λ
γ




=




f
1
...
f

p

g
q



. (22)

The unique solvability of the linear system (22) and therefore of the coupled
variational problem (15)–(20) follows from some stability (LBB) condition
linking the local trial spaces S1

h(Γi) and S0
h(Γij) along the coupling interface

Γij . Here, we only consider the special case where the basis functions ϕi
k and

ψij
s are biorthogonal, i.e.
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∫

Γij

ϕi
k(x)ψij

s (x)dsx =

{
1 for s = k,
0 for s 6= k.

Then, the entries of the matrices Bi consist just of zeros and ±1 describing
a nodal coupling of the associated primal degrees of freedom. In particular,
the use of biorthogonal basis functions ensures the LBB condition which is
related to the block matrices Bi in (22), see, e.g., [21]. Moreover, the use
of biorthogonal basis functions to discretize the coupled variational problem
(15)–(20) is equivalent to a redundant finite or boundary element tearing and
interconnecting approach for a standard domain decomposition formulation,
see, e.g., [11].

While for matching grids the described formulation is a conforming dis-
cretization scheme, it may be generalized to different local grids and different
local trial spaces as well. This leads immediately to hybrid or mortar domain
decomposition methods where the choice of local trial spaces is essential to
ensure the local stability conditions, see, e.g., [21] and the references given
therein. Since the approximation of the local Dirichlet to Neumann maps can
be done by any available discretization scheme, the presented formulation al-
lows the coupling of different discretization schemes such as finite and bound-
ary element methods, and the coupling of locally different meshes and trial
spaces. When considering a boundary element approximation of the Steklov–
Poincaré operator

Siui = [Di + (
1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)]ui = Diui + (

1

2
I +K ′

i)wi

the local Neumann data wi = V −1
i ( 1

2I+Ki) coincide with the Neumann data
ti as used in the coupled formulation (14). It seems to be an open problem how
this relation can be used to find further advanced boundary element domain
decomposition formulations, in particular to find more efficient preconditioned
iterative strategies to solve the resulting linear systems of equations in parallel.

3 Conclusions

For the numerical analysis of standard boundary element methods see, for ex-
ample, [17]. Since the discretization of non–local boundary integral operators
with singular kernel functions leads to dense stiffness matrices, the use of fast
boundary element methods is an issue. For an overview of those methods, and
for the implementation and for the application of the Adaptive Cross Approx-
imation approach, see [14]. Other possible fast boundary element methods are
the Fast Multipole Method, see, e.g., [13] and the references therein, or Hier-
archical Matrices, see, e.g., [4]. The iterative solution of the linear system (22)
of the boundary element tearing and interconnecting approach can be done by
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a projected preconditioned conjugate gradient method in a special inner prod-
uct since the system matrix has a two fold saddle point structure, see also [9],
where we have also described appropriate preconditioning strategies. While
the potential equation (1) is just a model problem, the methodology given in
this paper can be extended to more advanced problems in a straightforward
way, e.g., for problems in linear elastostatics, for almost incompressible ma-
terials and for the Stokes problem. More challenging are the handling of the
Helmholtz equation or of the Maxwell system where more advanced formu-
lations are needed to obtain boundary integral equations which are unique
solvable for all wave numbers.
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