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Summary. We design and study Schwarz Waveform relaxation algorithms for the
linear Schrödinger equation with a potential in one dimension. We show that the
overlapping algorithm with Dirichlet exchanges of informations on the boundary is
slowly convergent, and we introduce two new classes of algorithms: the optimized
Robin algorithm and the quasi-optimal algorithm. Numerical results illustrate the
great improvement of these methods over the classical algorithm.

1 Introduction

We investigate the design of domain decomposition algorithms for the linear
Schrödinger equation with a real potential V , in one space dimension:

{
i∂tu(t, x) + ∂2

xu(t, x) + V (x)u(t, x) = 0, t ≥ 0, x ∈ R,
u(0, x) = u0(x).

(1)

This equation is an important model in quantum mechanics, in electromag-
netic wave propagation, and in optics (Fresnel equation). To our knowledge,
there is no study prior to the present work on domain decomposition methods
for the Schrödinger equation.

We first introduce the classical algorithm, with overlapping subdomains,
exchanging Dirichlet data on the boundaries. Its slow convergence emphasizes
the need for new algorithms.

The key point of these new algorithms is to notice that the convergence
in two iterations is obtained when using transparent boundary operators as
transmission operators between the subdomains, even in the non-overlapping
case. However, these operators are not available for a general potential. Thus,
we introduce a quasi-optimal algorithm using the transparent operators cor-
responding to the value of the potential on the boundary. We also study the
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possibility of using simpler transmission conditions on the boundary, of com-
plex Robin type.

We then introduce a discretization of the Robin algorithm and a discretiza-
tion of the quasi-optimal algorithm.

We finally illustrate the results through numerical simulations, for various
types of potentials, like constant, barrier, or parabolic. We show how slow the
convergence is with Dirichlet Schwarz Waveform Relaxation (SWR), and how
the optimized SWR greatly improves the convergence. We also show, that the
best results by far are obtained by the discrete quasi-optimal algorithm.

Remark 1. For a more detailed study, we refer the reader to [6].

2 Classical Schwarz Waveform Relaxation

Let L := i∂t + ∂2
x + V (x). We decompose the spatial domain Ω = R into

two overlapping subdomains Ω1 = (−∞, L) and Ω2 = (0,∞), with L > 0.
The overlapping Schwarz waveform relaxation algorithm consists in solving
iteratively subproblems on Ω1 × (0, T ) and Ω2 × (0, T ), using as a boundary
condition at the interfaces x = 0 and x = L the values obtained from the
previous iteration. The algorithm is thus for iteration index k = 1, 2, . . . given
by 




Luk
1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

uk
1(L, ·) = uk−1

2 (L, ·),





Luk
2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

uk
2(0, ·) = uk−1

1 (0, ·).
(2)

Using the Fourier transform in time, we easily compute the convergence factor
of the classical algorithm in the case where the potential V is constant:

Θ(τ, L) = exp


−

(
−τ + V +

√
1 + (τ − V )2

2

)1/2

L


 , (3)

where τ is the time frequency.
The convergence factor in (3) tends to 1 when the overlap L tends to

0, as all overlapping Schwarz methods do. But it also tends to 1 when τ
tends to infinity, which differs from what happens for wave equations [5] or
parabolic equations [3]. This deterioration of the convergence factor for high
frequencies suggests a poor performance of the classical algorithm for the
Schrödinger equation. This is confirmed by the numerical results. In figure 1,
we present the exact solution and the approximate solution computed with the
classical algorithm at various times for the free Schrödinger equation (V = 0).
The results are displayed after 200 iterations of the algorithm. We take two
subdomains Ω1 = (−5, 4∆x) and Ω2 = (0, 5), and the step sizes are ∆t =
0.00125, ∆x = 0.0125.
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Fig. 1. Exact solution (solid) and approximate solution computed with the classical
algorithm at iteration 200 (dashed). (a) t = 0.33, (b) t = 0.4, (c) t = 0.5

Although the algorithm works well for times up to t = 0.3, it then deteriorates
so that the approximate solution becomes extremely oscillating and does not
approximate the exact solution at all. Since this bad behavior happens after
200 iterations, this clearly demonstrates that one should avoid the classical
algorithm when computing the Schrödinger equation. This also motivates the
need for new algorithms, which we investigate in the next sections.

3 Optimal Schwarz Waveform Relaxation Algorithm

When V is constant, it is possible to compute the optimal algorithm. Let S1

and S2 be linear operators acting only in time. We introduce the algorithm




Luk
1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

(∂x + S1)u
k
1(L, ·)
= (∂x + S1)u

k−1
2 (L, ·),





Luk
2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

(∂x + S2)u
k
2(0, ·)
= (∂x + S2)u

k−1
1 (0, ·).

(4)

We define the symbol σj of Sj(∂t) by σj(τ) = Sj(iτ). Using Fourier transform
in time, we can prove that the algorithm (4) converges to the solution u of (1)
in two iterations independently of the size of the overlap L ≥ 0, if and only if
the operators S1 and S2 have the corresponding symbols

σ1 = (τ − V )1/2, σ2 = −(τ − V )1/2 (5)

with

(τ − V )1/2 =

{√
τ − V if τ ≥ V,

− i
√
−τ + V if τ < V.

(6)

For variable potentials, the optimal operators are in general not at hand.
We present here and will compare two approximations of those. The first one
is to use a “frozen coefficients” variant of these operators. The second one is to
replace them by a constant, obtaining “Robin type” transmission conditions,
and to optimize them by minimizing the convergence factor in the constant
case.
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4 The Quasi-optimal Algorithm

We use as transmission operators the optimal operators for the constant po-
tential equal to the value of V on the interface. The quasi-optimal algorithm
is thus for iteration index k = 1, 2, . . . given by





Luk
1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

(∂x +
√
−i∂t − V (L))uk

1(L, ·) =

(∂x +
√
−i∂t − V (L))uk−1

2 (L, ·),





Luk
2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

(∂x −
√

−i∂t − V (0))uk
2(0, ·) =

(∂x −
√

−i∂t − V (0))uk−1
1 (0, ·)

(7)

where
√

−i∂t − V (x) is the operator acting only in time with symbol given by
(6). Though being not differential, this operator is still easy to use numerically
[2].

We call the algorithm (7) quasi-optimal, since it is optimal for a constant
potential. Even for a non constant potential V , we are able to prove its con-
vergence when there is no overlap, i.e. L = 0, and when T = +∞ in the
following spaces:

(H1/4(0, T, L2(Ω1)) ∩H−1/4(0, T,H1(Ω1)))
×(H1/4(0, T, L2(Ω2)) ∩H−1/4(0, T,H1(Ω2))).

The proof is based on energy estimates and follows an idea from [7], which
has widely been used since (see [4, 8] for steady problems, [5] for evolution
equations). Here, the additional difficulty is to deal with the nonlocal operator√
−i∂t − V (0).

5 The Algorithm with Robin Transmission Conditions

A simple alternative to the previous approach is to use Robin transmission
conditions, i.e. to replace the optimal operators Sj by S1 = −S2 = −ipI
where p is a real number, which gives the algorithm




Luk
1 = f in Ω1 × (0, T ),

uk
1(·, 0) = u0 in Ω1,

(∂x − ip)uk
1(L, ·)
= (∂x − ip)uk−1

2 (L, ·),





Luk
2 = f in Ω2 × (0, T ),

uk
2(·, 0) = u0 in Ω2,

(∂x + ip)uk
2(0, ·)
= (∂x + ip)uk−1

1 (0, ·).

(8)

Remark 2. This algorithm is not the usual Robin algorithm as the constant ip
used here is complex, whereas the usual Robin algorithm uses a real constant.

Relying on energy estimates, we are able to prove the convergence even
for a non constant potential V when there is no overlap, i.e. L = 0, and for
any p > 0 in the following spaces:
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L∞(0, T ;L2(Ω1)) × L∞(0, T ;L2(Ω2)).

Of course, the convergence taking place for any p > 0, we will optimize the
convergence rate with respect to p > 0 in order to accelerate the convergence.

6 Construction of the Discrete Algorithms

For the Robin algorithm, we use a finite volume discretization. In the interior,
it produces the Crank-Nicolson scheme, widely used in the linear and nonlinear
computations for the Schrödinger equation, whereas the Robin transmission
conditions are naturally taken into account. This idea was first introduced in
[5] for the wave equation in one dimension.

For the discretization of the quasi-optimal algorithm, we also use the
Crank-Nicolson scheme on the interior. Here, the main task is to discretize
the nonlocal transmission condition. We thus have to discretize the opera-
tor

√
−i∂t + V . We use the discrete transparent boundary condition designed

by Arnold and Ehrhardt precisely for the Crank-Nicolson scheme [2]. It is a
discrete convolution:

√
−i∂t + V U(0, n) ≃

n∑

m=0

S(n−m)U(0,m),

where the convolution kernel S(m) is given by a recurrence formula (see [2]).

Remark 3. Other choices of discrete transparent boundary conditions (for ex-
ample the one designed in [1]) could be used to discretize the quasi-optimal
algorithm.

7 Numerical Results

The physical domain is (a, b) = (−5,+5). It is divided in two subdomains
of equal size. Our algorithms are implemented the Gauss-Seidel way, i.e. we
compute u1 with gL, then deduce g0 by u1 and give it to the right domain for
the computation of u2. Thus iteration #k in this section corresponds to the
computation of u2k−1

1 , u2k
2 in the theoretical setting.

7.1 The Free Schrödinger Equation

In the case of the free Schrödinger equation, the quasi-optimal algorithm co-
incides with the optimal one and converges in two iterations as expected by
the theory. It is thus the best algorithm, but we would still like to see how the
Robin algorithm behaves and to compare it with the classical algorithm. We
consider in Figure 2 an overlap of 2%. The error is the L2 norm of the error
on the boundary of Ω2. We clearly see the great improvement.
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Fig. 2. Convergence history: comparison of the Dirichlet and optimized Robin
Schwarz algorithm. δ = 2%.

7.2 Non Constant Potentials

We consider the interval (−5, 5), with a final time T = 1, discretized with
∆x = 0.05 and ∆t = 0.005. The size of the overlap is 4∆x. The potential is a
barrier equal to 20 times the characteristic function of the interval (−1, 1). In
figure 3, we draw the convergence history for Dirichlet and Robin algorithms.
In this case again, the Robin condition behaves much better than the Dirichlet
condition.
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Fig. 3. Convergence history: comparison of the Dirichlet and optimized Robin
Schwarz algorithm for a potential barrier. The overlap is equal to 4%.

The quasi-optimal algorithm is by far the most efficient. In all cases, even
when the potential is not constant, the precision 10−12 is reached in at most
five iterations with or without overlap. As an example, we show in Figure
4 the convergence history with an overlap of 8 grid points, for a parabolic
potential, for various mesh sizes. The convergence does not depend on the
mesh size.
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Fig. 4. Convergence history for the quasi-optimal Schwarz algorithm in presence of
a parabolic potential

Finally, we present the exact solution and the approximate solution com-
puted with the three algorithms at time t = 0.9 for a parabolic potential.
The results are displayed after only three iterations of the algorithm. We take
two subdomains Ω1 = (−5, 4∆x) and Ω2 = (0, 5), and the step sizes are
∆t = 0.0025 and ∆x = 0.025. As expected, the classical algorithm produces
a highly oscillating solution. The Robin algorithm behaves far better and
clearly approximates the exact solution. Finally, the quasi-optimal algorithm
is the best as we can not distinguish between the exact and the approximate
solution.
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Fig. 5. Exact solution (solid) and approximate solution computed with the three
algorithms after 3 iterations (dashed) at time t = 0.9. (a) Classical algorithm, (b)
Robin algorithm, (c) quasi-optimal algorithm

Remark 4. The Robin algorithm is very sensitive to the value of p > 0. In our
numerical experiments, we take the optimal value of p obtained for a constant
potential V which is given by an explicit formula.

Remark 5. As predicted by the theory, our numerical results indicate that the
Robin algorithm and the quasi-optimal algorithm both converge even without
overlap unlike the classical algorithm.
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8 Conclusion

We have presented here a general approach to design optimized and quasi-
optimal domain decomposition algorithms for the linear Schrödinger equation
with a potential in one dimension. It allows the use of any discretization, any
time and space steps in the subdomains. These algorithms greatly improve
the performances of the classical Schwarz relaxation algorithm. We intend to
extend our analysis to the two-dimensional case in a close future.
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2004-24, LAGA, Université Paris 13, 2004. http://www-math.math.univ-
paris13.fr/prepub/pp2004/pp2004-24.html.
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