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1 Introduction

The search for efficient preconditioners for H(curl) problems on unstructured
meshes has intensified in the last few years. The attempts to directly construct
AMG (algebraic multigrid) methods had some success, see [10, 1, 6]. Exploit-
ing available multilevel methods on auxiliary mesh for the same bilinear form
led to efficient auxiliary mesh preconditioners to unstructured problems as
shown in [7, 4]. A computationally more attractive approach was recently
announced in [5]. Their method borrows the main tool from the above men-
tioned auxiliary mesh preconditioners, namely, the interpolation operator Πh

that maps functions from H(curl) into the lowest order Nédélec finite element
space Vh. The method of [5] and its motivation are outlined in Section 2. In
particular, we describe briefly their Nédélec space decomposition, which is the
basis of the auxiliary space AMG preconditioners.

In the present paper we consider several options for constructing unstruc-
tured mesh AMG preconditioners for H(curl) problems and report a sum-
mary of computational results from [8, 9]. In contrast to [5], we apply AMG
directly to variationally constructed coarse-grid operators, and therefore no
additional Poisson matrices are needed on input. We also consider variable co-
efficient problems, including some that lead to a singular matrix. Both types
of problems are of great practical importance, and are not covered by the
theory of [5].

The main Section 3 consists of an extensive set of numerical experiments
that illustrate the behavior of various auxiliary space AMG preconditioners.
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2 The Auxiliary Spaces and Operators

We are interested in solving the following variational problem stemming from
the definite Maxwell equations:

Find u ∈ Vh : (α curlu, curlv) + (β u,v) = (f ,v) , for all v ∈ Vh . (1)

Here we consider α > 0 and β ≥ 0 which are scalar coefficients, but extensions
to (semi)definite tensors are possible. We allow β to be zero in part or the
whole domain (in which case the resulting matrix is only semidefinite, and
for solvability the right-hand side should be chosen to satisfy compatibility
conditions). Let Ah be the stiffness matrix corresponding to (1), where Vh is
the (lowest order) Nédélec space associated with a triangulation Th.

Let Sh be the space of continuous piecewise linear finite elements associ-
ated with the same mesh Th as Vh, and Sh be its vector counterpart. Let Gh

and Πh be the matrix representations of the mapping ϕ ∈ Sh 7→ ∇ϕ ∈ Vh

and the nodal interpolation from Sh to Vh, respectively. Note that Gh has
as many rows as the number of edges in the mesh, with each row having two
nonzero entries: +1 and −1 in the columns corresponding to the edge ver-
tices. The sign depends on the orientation of the edge. Furthermore, Πh can
be computed based only on Gh and on the coordinates of the vertices of the
mesh.

The auxiliary space AMG preconditioner for Ah is a “three-level” method
utilizing the subspaces Vh, GhSh, and ΠhSh. Its additive form reads (cf. [11])

Λ−1
h +GhB

−1
h GT

h + ΠhB−1
h ΠT

h , (2)

where Λh is a smoother for Ah, while Bh and Bh are efficient preconditioners
for GT

h AhGh and ΠT
h AhΠh respectively. Since these matrices come from el-

liptic forms, the preconditioner of choice is AMG (especially for unstructured
meshes).

If β is identically zero, one can skip the subspace correction associated
with Gh, in which case we get a two-level method.

The motivation for (2) is that any finite element function uh ∈ Vh allows
for decomposition of the form (cf., [5]) uh = vh +Πhzh +∇ϕh with vh ∈ Vh,
zh ∈ Sh and ϕh ∈ Sh such that the following stability estimates hold,

h−1‖vh‖0 + ‖zh‖1 ≤ C ‖ curluh‖0 and ‖∇ϕh‖0 ≤ C ‖uh‖0. (3)

3 Numerical Experiments

In this section we present results from numerical experiments with different
versions of the auxiliary space AMG method used as a preconditioner in PCG.

We set Λ−1
h to be a sweep of symmetric Gauss-Seidel, and consider the

following preconditioners:
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{1} Multiplicative version of (2) with Bh and Bh implemented as one AMG
V-cycle for GT

h AhGh and ΠT
h AhΠh respectively.

{2} Additive preconditioner using the same components as {1} and extra
smoothing.

{3} Multiplicative preconditioner with Bh and Bh implemented using a sweep
of geometric multigrid for Poisson problems, as described in [5].

{4} Additive preconditioner using the same components as {3} and extra
smoothing.

{5} The preconditioner {3} using AMG instead of geometric multigrid.

The AMG algorithm we used is a serial version of the BoomerAMG solver
from the hypre library. For more details see [2].

We report the number of preconditioned conjugate gradient iterations with
the above preconditioners and relative tolerance 10−6, i.e. the iterations were
stopped after the preconditioned residual norm was reduced by six orders
of magnitude. In a few of the tests we also tried the corresponding two-level
methods (using exact solution in the subspaces) and listed the iteration counts
in parentheses following the V-cycle results.

3.1 Constant Coefficients

First we consider several simple constant coefficients problems with α = β = 1.
We test both two-dimensional triangular and three-dimensional tetrahedral
meshes. The results are listed in Tables 1–6, where the following notation
was used: ℓ is the refinement level of the mesh, N is the size of the problem,
and n1 to n5 give the iteration count for each of the auxiliary space AMG
preconditioners {1} to {5}. When available, the error in L2 is also reported.

The experiments show that all considered solvers result in uniform and
small number of iterations, which is in agreement with the theoretical results
from [5, 9]. One can also observe that the multilevel results are very close in
terms of number of iterations to the two-level ones.

Note that the first two methods (based on the original form) appear to
work the same, independently of how complicated the geometry is. This is
particularly interesting in the case of the third problem, where the assump-
tion that the boundary is connected (needed to establish the decomposition
in [5]) is violated. In contrast, the third and forth methods (based on Pois-
son subspace solvers) consistently result in higher number of iterations, and
perform much worse on the third problem.

3.2 Variable Coefficients

In Tables 7–8 we report results from a test where α and β are piecewise
constant coefficients. Note that this case is not covered by the theory in [5].
However, the modifications to the Poisson-based preconditioners are straight-
forward, namely they assemble matrices corresponding to the bilinear forms
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Table 1. Initial mesh and numerical results for the problem on a square.

ℓ N n1 n2 n3 n4 ‖e‖L2

2 896 4 (3) 9 (9) 10 (9) 16 (15) 0.011898
3 3520 4 (3) 10 (9) 11 (10) 17 (16) 0.005953
4 13952 4 (3) 10 (9) 12 (11) 18 (15) 0.002977
5 55552 4 (3) 10 (9) 13 (11) 18 (16) 0.001489
6 221696 4 (3) 10 (8) 13 (11) 18 (16) 0.000744
7 885760 5 10 13 18 0.000372
8 3540992 5 11 13 19 0.000186

Table 2. Initial mesh and numerical results for the problem on a disk.

ℓ N n1 n2 n3 n4

1 736 4 (2) 9 (8) 7 (7) 11 (11)
2 2888 4 (3) 10 (9) 7 (7) 12 (11)
3 11440 4 (3) 10 (9) 7 (7) 12 (11)
4 45536 5 (3) 11 (9) 7 (7) 12 (11)
5 181696 5 (3) 11 (8) 8 (7) 12 (11)
6 725888 5 11 8 12
7 2901760 5 12 8 11

Table 3. Initial mesh and numerical results for the problem on a square with a
circular hole.

ℓ N n1 n2 n3 n4

2 972 6 (3) 11 (9) 21 (20) 33 (31)
3 14976 6 (3) 12 (9) 23 (21) 33 (31)
4 59520 7 (3) 12 (9) 23 (17) 35 (23)
5 237312 6 13 24 35
6 947712 7 13 25 35
7 3787776 7 14 25 35

Table 4. Initial mesh and numerical results for the problem on a cube.

ℓ N n1 n2 n3 n4 ‖e‖L2

0 722 3 (3) 9 (7) 6 (6) 11 (11) 0.6777
1 5074 4 (3) 10 (9) 9 (9) 16 (15) 0.3776
2 37940 5 (4) 11 (10) 12 (11) 20 (19) 0.2152
3 293224 5 (4) 11 (10) 14 (12) 22 (20) 0.1096
4 2305232 5 11 15 23 0.0549
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Table 5. Initial mesh and numerical results for the problem on a ball.

ℓ N n1 n2 n3 n4

0 704 3 (3) 9 (7) 5 (5) 9 (9)
1 4669 4 (3) 10 (9) 7 (7) 13 (12)
2 37940 5 (4) 12 (10) 8 (8) 15 (14)
3 255700 6 (5) 13 (12) 9 (8) 15 (14)
4 1990184 7 14 10 16

Table 6. Initial mesh and numerical results for the problem on a union of two
cylinders.

ℓ N n1 n2 n3 n4

0 1197 3 (3) 10 (8) 7 (7) 13 (13)
1 8248 4 (4) 11 (10) 10 (9) 17 (16)
2 60940 5 (5) 12 (11) 12 (11) 19 (18)
3 467880 6 (5) 12 (11) 13 (12) 21 (19)
4 3665552 6 13 14 22

(β∇u,∇v) and (α∇u,∇v) + (βu,v). Here we concentrated only on the mul-
tiplicative AMG methods.

For the problem illustrated in Table 7 (where the jumps are simple), we
observe stable number of iterations with respect to both the mesh size and the
magnitude of the jumps. Note that this setup was reported to be problematic
for geometric multigrid in [3]. As before, the method based on the original
form outperforms the one based on AMG Poisson subspace solvers.

3.3 Singular Problems

Tables 9–10 present results for the problem corresponding to α = 1, β = 0,
i.e., to the bilinear form (curlu, curlv). In this case the matrix is singular, and
the right-hand side, as well as the solution, belong to the space of discretely
divergence free vectors (the kernel of GT

h ). Since β = 0, the solvers were
modified to skip the correction in the space GhSh. This leads to a simpler
preconditioner, which in additive form reads

Λ−1
h + ΠhB−1

h ΠT
h . (4)

The results in Tables 9–10 are quite satisfactory and comparable to those
from Tables 3 and 6. This is not surprising, since (3) implies that any [uh]
in the factor space Vh/∇Sh, has a representative ũh ∈ [uh], such that ũh =
uh −∇ϕh = vh + Πhzh and
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Table 7. Numerical results for the problem on a cube with α and β having different
values in the shown regions (cf. [3]). Multiplicative preconditioner with AMG V-
cycles in the subspaces.

ℓ N p
−8 −4 −2 −1 0 1 2 4 8

n1 for α = 1, β ∈ {1, 10p}
1 716 3 3 3 3 3 4 4 4 4
2 5080 4 4 4 4 4 4 5 6 6
3 38192 5 5 5 5 5 5 5 6 6
4 296032 5 5 5 5 5 5 6 6 6
5 2330816 5 5 5 5 5 6 6 6 6

n1 for β = 1, α ∈ {1, 10p}
1 716 6 6 5 4 3 4 4 4 4
2 5080 6 6 6 5 4 5 5 5 5
3 38192 7 7 7 5 5 5 6 6 6
4 296032 8 8 7 6 5 6 6 6 6
5 2330816 8 9 7 6 5 6 6 6 6

Table 8. Numerical results for the problem from Table 7 using multiplicative pre-
conditioner with Poisson subspace solvers based on algebraic multigrid.

ℓ N p
−8 −4 −2 −1 0 1 2 4 8

n5 for α = 1, β ∈ {1, 10p}
1 716 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6) 6 (6) 5 (5) 5 (5)
2 5080 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 9 (9) 9 (9) 9 (9)
3 38192 11 (11) 11 (11) 11 (11) 11 (11) 11 (11) 11 (11) 10 (10) 11 (11) 12 (11)
4 296032 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 12 (12) 13 (13) 14 (13)
5 2330816 14 14 14 14 14 13 13 14 15

n5 for β = 1, α ∈ {1, 10p}
1 716 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6)
2 5080 10 (9) 9 (9) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 9 (9)
3 38192 11 (11) 11 (11) 12 (12) 12 (12) 11 (11) 12 (12) 12 (12) 12 (12) 12 (12)
4 296032 13 (13) 13 (13) 14 (14) 14 (14) 12 (12) 15 (14) 15 (15) 15 (15) 14 (14)
5 2330816 15 15 16 16 14 16 17 17 17

h−1‖vh‖0 + ‖zh‖1 ≤ C ‖ curl ũh‖0 = C ‖ curl [uh]‖0 .

In Table 11 we also consider the important practical case when β is zero
only in part of the region. For this test we used a preconditioner based on
(2) instead of (4). Even though the problem is singular and β has jumps,
the iterations counts are comparable to the case of constant coefficients. For
example, the number of iterations for α = 1, β = 1 given to the right of the
table is almost identical to those when α = 1, β = 0.



Auxiliary Space AMG for H(curl) Problems 153

Table 9. Initial mesh and numerical results for the singular problem on a square
with circular hole.

ℓ N n1 n2 n3 n4

2 972 7 12 19 28
3 14976 6 12 19 28
4 59520 7 12 19 28
5 237312 7 12 20 29
6 947712 7 11 20 29
7 3787776 7 12 21 29

Table 10. Initial mesh and numerical results for the singular problem on a union
of two cylinders.

ℓ N n1 n2 n3 n4

0 1197 5 11 9 17
1 8248 6 13 12 19
2 60940 7 15 13 22
3 467880 7 15 14 23
4 3665552 8 15 15 23

Table 11. Initial mesh and numerical results for the problem on a cube with β = 0
outside the interior cube. Multiplicative preconditioner with AMG V-cycles in the
subspaces.

ℓ N p
−8 −4 −2 −1 0 1 2 4 8

n1 for α = 1, β ∈ {0, 10p}
1 485 2 3 3 2 4 2 3 3 3 (4)
2 3674 5 5 5 6 5 6 6 6 7 (6)
3 28692 8 7 8 7 7 8 8 10 10 (7)
4 226984 7 7 7 7 7 9 8 9 9 (7)
5 1806160 8 8 8 8 8 8 9 10 11 (8)
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