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Many popular non-overlapping domain decomposition approaches to fluid-structure
interaction (FSI) problems fail to work for an interesting subset of FSI problems, the
interaction of highly deformable structures with incompressible but fully enclosed
fluids. This is particularly true for coupling approaches based on Dirichlet-Neumann
substructuring, both for weak and strong coupling schemes. The breakdown of simu-
lation can be attributed to a lack of knowledge transfer – e.g. of the incompressibility
constraint to the structure – between the fields. Another explanation is the absence
of any unconstrained outflow boundary at the fluid field, that is the fluid domain
is entirely enclosed by Dirichlet boundary conditions. Inflating of a balloon with
a prescribed inflow rate constitutes a simple problem of that kind. To overcome
the dilemma inherent to partitioned or domain decomposition approaches in these
cases a small augmentation is proposed that consists of introducing a volume con-
straint on the structural system of equations. Additionally the customary applied
relaxation of the interface displacements has to be abandoned in favor of the relax-
ation of coupling forces. These modifications applied to a particular strongly-coupled
Dirichlet-Neumann partitioning scheme result in an efficient and robust approach
that exhibits only little additional numerical effort. A numerical example with large
changes of fluid volume shows the capabilities of the proposed scheme.

1 The Domain Decomposition Approach to FSI
Problems

Various solution approaches for FSI problems have been suggested. Most of them
are based on a Dirichlet-Neumann partitioning of the coupled problem into fluid
and structural part. This constitutes a non-overlapping domain decomposition with
fluid field and structural field acting as separate domains. The wet structural surface
acts as the coupling interface ΓFSI. These solution schemes require an iterative treat-
ment of the coupling conditions and therefore considerable computational resources,
however stability and accuracy are not sacrificed. Additionally these schemes can be
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built based on available field solvers, which accounts for their constant popularity,
see for instance [10, 4, 5, 7, 2, 1, 9, 8].

To sketch the FSI coupling algorithm the structural and fluid problems are
abbreviated as follows

A
S
d
S = f

S and A
F
u
F = f

F (1)

where both systems are understood to be nonlinear and the fluid system also needs
to take the domain deformations into account.

In the following (·)I and (·)Γ denote variables or coefficients in the interior of
a subdomain Ωj and those coupled at the interface, respectively, while the absence
of any subscript comprises degrees of freedom on the entire subdomain including
interior and interface.

In every time step the following calculations have to be performed until conver-
gence is reached. The variable i denotes the loop counter.

1. Transfer the latest structure displacements d
S
Γ,i+1 to the fluid field, calculate

the fluid domain deformation and determine the appropriate fluid velocities at
the interface u

S
Γ,i+1.

2. Solve the fluid equation for inner fluid velocities and all (inner and boundary)
fluid pressures u

F
I,i+1.
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3. Find the fluid forces f
F
Γ,i+1 at the interface ΓFSI.
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S
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4. Apply the fluid forces f
F
Γ,i+1 to the structure. Solve the structure equations for

the structural displacements.
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5. The calculation is finished when the difference between d̃
F

Γ,i+1 and d
F
Γ,i is suffi-

ciently small.
6. Relax the interface displacement using a suitable ωi.

d
S
Γ,i+1 = ωid̃

S

Γ,i+1 + (1− ωi)dSΓ,i . (5)

7. Update i and return to step 1.

Information on the appropriate choice of the relaxation coefficient ωi can be
found in [10, 5].

2 Dilemma with Fully Enclosed,
i.e. Dirichlet-Constraint, Fluid Domains

The Dirichlet-Neumann algorithm described above fails if there are prescribed veloc-
ities on all boundaries of the fluid domain. A fully Dirichlet-bounded fluid domain
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can only be solved if (a) the prescribed velocities satisfy the mass balance of the
incompressible fluid and (b) the pressure level is fixed by an additional constraint.
Standard Dirichlet-Neumann algorithms fail on both conditions. Neither does the
fluid domain deformation suggested by the structural solver match the fluid mass
balance, nor are there means to transfer any pressure information form the structure
to the fluid.

These two difficulties are closely related. The two fields are coupled much closer
as compared to FSI problems with free outflow boundaries. Therefore any attempt
to overcome the difficulties will result in an algorithm that is more expensive from
a numerical point of view.

Several strategies might be pursued to arrive at a working coupling algorithm.

• The interface displacements, that is the structural solution, respect the incom-
pressibility constraint of the fluid. Thus the introduction of a constraint to the
structural equations is required. The fluid pressure level will need to be calcu-
lated from the structure solution. This approach is presented in detail in the
following.

• Another point of departure is the pressure level coupling between structure
and fluid. The natural way for the structure to determine the fluid pressure
is to transfer interface forces from the structure to the fluid. It follows that the
fluid has to prescribe the interface displacements on the structure, that is the
Dirichlet-Neumann coupling is reversed to a Neumann-Dirichlet approach. The
resulting algorithm, however, is numerically very sensitive and not suitable for
general FSI problems. In addition it also runs into the old problem once one has
to deal with incompressible solids, too. Details can be found in [3].

• Finally the whole problem is avoided if one can get rid of the incompressibility
constraint, at least temporarily. However this also has been shown to be not a
very robust or efficient approach. This idea has been pursued in [6] and will not
be discussed here.

It is worth noting, that according to the insight discussed so far Dirichlet-
Neumann approaches only work in standard examples because the fluid can tem-
porarily escape through the Neumann boundary in staggered situations or during
the field iterations in strong coupling schemes.

3 Augmented Dirichlet-Neumann Approach

3.1 Volume Constraint Applied to the Structural Equation

The augmentation of the structural solver to account for the mass balance of the
enclosed fluid domain translates to a constraint of the interface displacements to
enclose exactly the required volume. The required fluid volume Vc depends upon
the Dirichlet boundary conditions of the fluid domain.

Vc = V n+1 = V n +

∫

ΓF

1

2
∆t
(
un+1 · n + un · n

)
dΓ

= V n +

∫

ΓFSI

(
rn+1 · n− rn · n

)
dΓ (6)
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+

∫

Γin∪Γout
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2
∆t
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un+1 · n + un · n

)
dΓ

where rn+1 and rn are the interface positions at the time tn+1 and tn. The constraint
Vc − V = 0 is introduced into the structural equation of motion by means of a La-
grangian multiplier λ. This Lagrangian multiplier represents the pressure increment
required additional to the fluid pressure in order to satisfy the volume constraint on
the structure. Thus the multiplier specifies the physical fluid pressure level.

If the fluid forces at the interface fF are sufficient to maintain the required
volume Vc, the pressure increment λ will be zero. This can be achieved by a coupling
algorithm that transfers λ to the fluid partition and adds it to the pressure boundary
condition which is used to determine the pressure level. This way the Lagrangian
multiplier λ will tend to zero in the course of the coupling iteration.

But changing the pressure boundary condition of the fluid during the coupling
iteration means changing the overall problem definition. It is generally advisable
to avoid it. Instead the fluid pressure level can be fixed to a constant value in the
fluid domain. Of course the resulting pressure increment λ will not vanish in this
case. Instead it is added to the fluid pressure values pF after the fluid calculation to
obtain the final pressure solution p:

p = pF + λ . (7)

3.2 Modified Dirichlet-Neumann Coupling with Volume
Constraint

The iterative coupling algorithm with the volume constraint in the structural equa-
tion is a slight modification of the algorithm in section 1. Because the structural
solver has to account for the volume condition of the fluid domain, the displacement
of the interface cannot be altered once the structural solution is done. In particular
the relaxation of the displacements is no longer possible. Instead, because relaxation
is needed to enforce and accelerate convergence, one has to relax the fluid forces at
the interface.

By means of the symbolic structural and fluid system (1) in every time step the
following calculations have to be performed.

1. Solve for the structural displacements loaded with the fluid forces f
F
Γ,i, but

respect the volume constraint required by the fluid



A
S
ΓΓ A

S
ΓI −V,dS

Γ

A
S
IΓ A

S
II 0

−V,dS
Γ

0 0







d
S
Γ,i+1

d
S
I,i+1

λi+1


 =




f
S
Γ ext − f

F
Γ,i − V,dS

Γ
λi

f
S
I ext

Vc − V,dS
Γ
d
S
Γ,i


 . (8)

2. Transfer the interface displacements d
S
Γ,i+1 to the fluid and determine the inter-

face velocities u
S
Γ,i+1. Solve for inner fluid velocities and all fluid pressures u

F
I,i+1

A
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F
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F
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3. Find the fluid forces at the interface ΓFSI

f̃
F

Γ,i+1 = A
F
ΓIu

F
I,i+1 + A

F
ΓΓu

S
Γ,i+1 . (10)
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4. Relax the fluid forces

f
F
Γ,i+1 = ωi f̃

F

Γ,i+1 + (1− ωi)fFΓ,i . (11)

The relaxation parameter ωi can again be calculated by any of the methods
suggested in [5].

The iteration finishes when the error of the fluid boundary force f̃
F

Γ,i+1 is sufficiently
small.

4 Example: Damped Structural Instability

As an example a bended fluid domain is calculated that is surrounded by two thin
structures with neo-Hookean material and different stiffness. The system is shown
in figure 1. The structures are fixed at their short edges, the long edges are free
respectively interacting with the fluid.

At the fluid domain inflow velocities are prescribed with the left one a little
less than the right in order to avoid perfect symmetry. The fluid is loaded with the
body force fy = −1N/m2 in y direction. The simulation is carried out utilizing the
augmented Dirichlet-Neumann algorithm and a uniform time step size ∆t = 0.005s.

maxuin = 10.0m
s maxuin = 10.1m

s

1m
8m

1m

0.1m

1m

0.1m

1.9m

1m

Structure below
E = 9 · 108 N

m2

ν = 0.3
̺ = 500.0 kg

m3

Structure above
E = 9 · 105 N

m2

ν = 0.3
̺ = 500.0 kg

m3

Fluid
ν = 9.0m2

s

̺ = 1.0 kg
m3

fy = −1 N
m2

pressure fixed

Fig. 1. A bended fluid domain with two inflow boundaries constraint by structures
of different stiffness.

The constant inflow increases the fluid pressure so that first mainly the soft
flexible structure above the fluid domain deforms to make room for the fluid. When
a critical pressure value is reached the structure below the fluid collapses, however
the instability is damped by the fluid volume constraint. That is why the deformation
and the corresponding pressure decrease occur rather slowly. (Since this example is
given just in order to demonstrate the augmented Dirichlet-Neumann approach,
possible cavitation effects are not considered.) Afterward the system is in motion,
the pressure varies rapidly in this phase. The pressure level development, that is the
pressure increment λ calculated by the structural solver, is depicted in figure 2.

Figure 3 shows absolute velocities at different time steps.
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Fig. 2. Pressure level of the bended fluid domain.

5 Conclusion

The dilemma of non-overlapping domain decomposition approaches to FSI problems
has been analyzed. Different solution strategies were considered. A small modifica-
tion to an established iterative solution scheme has been proposed that consists of
introducing the incompressibility constraint to the structural solver and results in a
reliable and accurate algorithm.

This one condition seriously damages the bandwidth of the system matrix, it
couples all displacements on the wet surface. Additionally the positive definiteness
of the matrix is lost. Thus the approach is rather expensive from a numerical point
of view. A common solver alternative in such a situation would be to use a staggered
scheme on the structural side. However, the additional costs pertain the structural
solver only. And because the fluid solution costs are dominating in most FSI calcu-
lations the proposed algorithm presents a viable approach for many FSI simulations
which require Dirichlet constraints on all fluid boundaries.
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[3] U. Küttler, Ch. Förster, and W. A. Wall. A solution for the incompressibil-
ity dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid
domains. Comput. Mech., 38(4):417–429, 2006.



Incompressibility Dilemma in Domain Decomposition FSI Approaches 581

t = 1.0s t = 2.0s

t = 2.5s t = 3.0s

t = 3.5s t = 4.0s

0.00 2.06 4.12 6.18 8.25 10.31 12.37 14.43 16.49 18.55 20.62

m
s
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