
Distributed Decomposition Over Hyperspherical

Domains

Aron Ahmadia1, David Keyes1, David Melville2, Alan Rosenbluth2, Kehan Tian2

1 Department of Applied Physics and Applied Mathematics, Columbia University, New

York, NY 10027, USA
2 IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA

Summary. We are motivated by an optimization problem arising in computational scaling for

optical lithography that reduces to finding the point of minimum radius that lies outside of the

union of a set of diamonds centered at the origin of Euclidean space of arbitrary dimension.

A decomposition of the feasible region into convex regions suggests a heuristic sampling ap-

proach to finding the global minimum. We describe a technique for decomposing the surface

of a hypersphere of arbitrary dimension, both exactly and approximately, into a specific num-

ber of regions of equal area and small diameter. The decomposition generalizes to any problem

posed on a spherical domain where regularity of the decomposition is an important concern.

We specifically consider a storage-optimized decomposition and analyze its performance. We

also show how the decomposition can parallelize the sampling process by assigning each pro-

cessor a subset of points on the hypersphere to sample. Finally, we describe a freely available

C++ software package that implements the storage-optimized decomposition.

1 Global Optimization for Semiconductor Lithography Mask

Design

In the newly heralded field of computational scaling [7], industrial scientists are now

investigating a global minimization formulation of the problem of mask design for

optimizing process windows in semiconductor lithography [5, 6]. We are considering

the problem of forming an optimal mask design for the optical printing of a given

2-D target image, which is considered as a set of sampled target points that must be

sufficiently illuminated for the image to correctly print. We attempt to minimize the

total intensity of a set of d exposure modes, with each axis xi corresponding to an

intensity for mode i. In the space of the d exposure modes, each of the n samples of

image features are represented as a d-dimensional diamond of infeasible space. Each

sampled image feature is sufficiently illuminated by the set of exposure modes if their

representative coordinate x ∈Rd lies outside the diamond. Sufficient illumination of

all sampled target features in an exposure is achieved in all points outside of the

union of the set of diamonds. Although a global minimum is ideal, the goal of the

problem is to find good solutions in a reasonable amount of time. Additionally, global
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minima that satisfy all the constraints may still be rejected due to manufacturability

considerations, so a good solution method will provide the global minima and may

provide a set of the best available local minima within each orthant of the search

space.

1.1 Convex Partitions of the Feasible Domain

The semiconductor lithography problem can be considered as the search for the

global minima of a linear optimization problem subject to nonconvex constraints:

minimize ‖x‖1 subject to Ai(x) ·x≥ bi i = 1 . . .n (1)

We define the jth normalized principal axis of diamond Ai as li, jci, j, with ci, j

representing the direction and li, j the magnitude of the principal axis. We then note

that each of the 2d planes defining a half-space exterior of a diamond connects the d

principal axes of the diamond. Ai(x) can be considered as a function of the choices

of signs for the vectors representing the principal axes of the diamond, the choice of

connection to the ’positive’ or ’negative’ end of each principal axis uniquely deter-

mines one of the planes.

Since the diamond is an intersection of half-spaces, a point x is considered feasi-

ble with respect to the diamond if it lies inside any of the reflected (pointing outwards

from the origin) half-spaces A+
i,k arising from the hyperplanes Ai,k. Each combination

of the positive and negative principal c j axes in a given diamond Ai is a set of d points

that uniquely determine a constraint half-space A+
i,k. For any given k and diamond Ai:

si,k( j)∗ ci, j ∈ Ai,k j = {1 . . .d} (2)

Since all of the constraint planes are linear and do not contain the origin:

if x1,x2, . . . ,xd ∈ Ak, and θ ∈ Rd , θ j ≥ 0,
d

∑
j

θ j ≥ 1

(θ1x1 +θ2x2 + · · ·+θdxd) ∈ A+
k

In particular:

θ ∈ Rd ,θ j ≥ 0,
d

∑
j

θ j ≥ 1 (3)

(θ1sk(1)c1 +θ2sk(2)c2 + · · ·+θdsk(d)cd) ∈ A+
k (4)

Because the set of principal axes l jc j for each diamond forms an orthogonal basis

on Rd , we can express:

x =
d

∑
j

l jθ jcj, θ j = c j ·x (5)
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Any combination of positive and negative θi, j can be converted to their absolute

values with an appropriate choice of k, and we can say that x lies outside diamond i

(by satisfying constraint half-space i,k) if:

d

∑
j=1

|θi, j|
li, j

≥ 1 (6)

We may enumerate a single plane Ai,k with a tuple, or ordered list of d signs si,k,

with the sign of the jth element si,k( j) corresponding to the ends of the principal axes

ci,j it connects. We represent the concatenation of all d-tuples si,k corresponding to a

choice of plane for each of the n diamonds into a single nl-tuple: s, with nl = n∗2d .

Similarly, we concatenate the list of all principal axes into a list {ci}, with i = 1 · · ·nl .

We define a set of nonoverlapping regions Rs that collectively exhaust Rd , with a

total of 2nl potential tuples s and corresponding regions Rs.

Rs : {x ∈ Rd | sign(ci ·x) = si, i = 1, . . . ,nl} (7)

Each s defines a convex region containing Rs:

d

∑
j=1

si, j(ci,j ·x)

li, j

≥ 1 ∀i (8)

If we enumerate the set of convex regions Rs, the global minima is the best local

minima from each of the regions.

2 Partitions of n-Space

We expect the true number of convex regions p in the space to be less than 2nl , as

some intersections of diamond half-spaces will be empty. We seek an upper bound

on p as a function of d, the dimensionality of the problem, and n, the number of

diamonds. We consider each of the diamonds as a set of d cutting planes, with ci,j

represented as a cutting plane that intersects the origin. Upper bounds for the num-

ber of regions generated by origin-centered cutting planes in general position were

established independently by [1], Perkins, Willis, and Whitmore (unpublished), and

[8]. “Partitions of N-Space by Hyperplanes”, [9] allows tighter bounds based on the

degeneracy of the planes. We consider the diamonds to be non-degenerate, so the

upper bounds for cutting planes in general position are sufficient:

p≤ Bn
d = 2

d−1

∑
i=0

(
n−1

i

)
(9)

3 Incomplete Search Heuristics

When applied to the semiconductor lithography problem, the coordinate axes repre-

sent linear combinations of the underlying physical variables that are chosen for their
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efficient average coupling to the features represented by the constraint diamonds.

This selection process causes the modes to be strongly coupled to individual con-

straint features, which in turn causes the axes of the diamonds to be preferentially

aligned with the coordinate axes. As a result the principal axes of the diamonds have

a tendency to cluster together directionally, making the size distribution of the re-

gions between intersecting ellipsoids very non-uniform, with the largest and deepest

regions comprising a small fraction of the total. Empirically it is found that solu-

tions which are adequately close to the global optimum can be found by searching

only the largest regions. In [5], the authors suggest that directly sampling points on

a hypersphere is a useful heuristic.

Fig. 1. Sampling reduces the number of regions to search by skipping small-angle regions,

unsearched regions are darkly shaded.

The number of sampled regions ns using a decomposition of the (d− 1)-sphere

embedded in Rd can be considered as a function of the search density per dimen-

sion ρ:

ns(ρ) = ρd . (10)

The number of sampled points is much more managable than the actual number of

potential convex regions. We accept the currently unquantified risk of missing the

global minimum in exchange for a more computationally tractable approximation to

the problem.

4 Hypersphere Decomposition

4.1 Previous Work

We are now faced with the task of partitioning a (d− 1)-sphere into regions of ap-

proximately equal area and small diameter. Fortunately, this topic has been well-

studied in [3], based on a construction for 2-spheres introduced earlier in Zhou’s
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1995 PhD Thesis as well as unpublished work by E.B. Saff and I.H. Sloan. A domain

decomposition method for particle methods on the 2-sphere was also introduced in

[2]. A full introduction to the general algorithm for d-spheres into ns partitions is

impossible here, but we generalize the algorithm as a partitioning of m-spheres into

regions which are then recursively partitioned as (m−1)-spheres.

4.2 A Memory-Efficient Tree Storage Scheme for Equal Area Hypersphere

Regions

We are motivated by the large value of ns to seek a compressed storage partition of ns

points. At each level j of the decomposition, starting at j = d, and ending at j = 1, we

have some number of j-spheres embedded into ( j+1)-space. We denote the number

of j-spheres in the decomposition at level j by k j. We propose using the procedure’s

recursive tree as a storage scheme for the points, avoiding the costs of storing full

coordinate information for each point. This idea was originally proposed in [4] in

section in 2.5 for spherical coding, though its potential for compressed storage was

not fully explored. We are interested in forming a loose bound on the total number

of nodes required for the storage of the tree. Since the number of nodes on the tree at

level j is based on the number of spheres at level k j, we seek an upper bound on k j.

At each level j, we decompose each j-sphere into some finite number of ( j−
1)-spheres and 2 polar caps. The ( j− 1)-spheres correspond to “collars” of the j-

spheres, and are assigned a number of regions proportional to their fractional area of

the sphere. We impose an indexing on all the spheres for a given level j, such that

if there are k j spheres at level j, then the spheres are indexed from i = 1, . . . ,k j, and

let ki, j equal the number of ( j− 1)-spheres to decompose the i, j-th sphere into.

Finally, we also affix zi, j to every sphere in the system, denoting the number of

regions contained by sphere i, j.

If we fix d = d− 1 and decompose the d-sphere, we have kd = 1. We can now

recursively build an estimate for kd−l−1 from kd−l for l = 0, . . . ,d−1. We claim that

kd−l = O(nl/d). This is true for the base case l = 0, and is true for all l if we can

show that kd−l−1 = O(n
l+1

d ). We use the fact that for a d-sphere being decomposed

into s regions, the number k of (d−1)-spheres/collars it contains is:

k =
π−2θd,n

σ(Sd)
s

1
d

(11)

Where θd,n is the polar cap angle for a d-sphere decomposed into ns regions and

σ(Sd) is the measure of surface area of a d-sphere. At each level j, we can account

for all regions contained by summing over the assigned regions for each j-sphere

and the polar caps for all m-spheres, where m > j:

k j

∑
i=1

zi, j +2
d+1

∑
m= j+1

km = n (12)
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Fig. 2. Actual vs. Estimated Number of Nodes for d = 2,5,10 and between 1000 and

10,000,000 sample points

Trivially: ∑
k j

i=1 zi, j ≤ n. We now make the observation that the solution to max

∑k
i=1(pi)

1/ j, subject to ∑(pi)≤ n, is equal to k( n
k
)1/ j, and substitute:

kd−l−1 = O(n j/d)
d−l−1

d−l n
1

d−l (13)

= O(n
ld−l2−l+d

d(d−l) ) (14)

= O(n
l+1

d ) (15)

We substitute in equation (12) to obtain an estimate for the upper bound of the

total nodes of the storage tree. We assume a constant C = 1, and:

K =
j=d

∑
j=2

k j = 2
j=d−1

∑
j=2

s j/d + s
d−1

d (16)

The estimates were computed for d = 2,5,10 and ns = 103 to ns = 107, then

compared against actual tree structures in Fig. 3.

4.3 Parallel Decomposition

Finally, we introduce an algorithm for two-level decomposition suitable for mas-

sively parallel distributed sampling of the n-sphere. This algorithm successfully dis-

tributed a parallel search over 2,048 Blue Gene nodes.

1. Apply Leopardi’s algorithm to generate a decomposition along some subspace

of the original space.
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Fig. 3. Two-level distributed decomposition of a 2-sphere

2. For each decomposed region, apply Leopardi’s algorithm again to sample points,

along decomposed dimensions, the algorithm operates on region boundaries es-

tablished in the first decomposition.

5 Ongoing Work

We wish to consider compressions of the tree structure by enforcing symmetry in the

hypersphere decomposition. We are also interested in improving the performance of

the tree structure code. A C++ implementation of the tree structure sampling code is

available from http://aron.ahmadia.net/code.
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