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Summary. We are concerned with structural optimization problems where the state variables

are supposed to satisfy a PDE or a system of PDEs and the design variables are subject to

inequality constraints. Within a primal-dual setting, we suggest an all-at-once approach based

on interior-point methods. Coupling the inequality constraints by logarithmic barrier functions

involving a barrier parameter and the PDE by Lagrange multipliers, the KKT conditions for

the resulting saddle point problem represent a parameter dependent nonlinear system. The ef-

ficient numerical solution relies on multilevel path-following predictor-corrector techniques

with an adaptive choice of the continuation parameter where the discretization is taken care of

by finite elements with respect to nested hierarchies of simplicial triangulations of the com-

putational domain. In particular, the predictor is a nested iteration type tangent continuation,

whereas the corrector is a multilevel inexact Newton method featuring transforming null space

iterations. As an application in life sciences, we consider the optimal shape design of capillary

barriers in microfluidic biochips.

1 Introduction

The optimization of structures and systems has a long history that can be traced back

to the work of Bernoulli, Euler, Lagrange, and Saint-Venant. It became its own disci-

pline during the second half of the last century when the rapid progress in electronic

data processing required the development and implementation of highly efficient and

robust algorithmic optimization tools. Nowadays, shape optimization is an indispens-

able tool for many design issues in aero- and fluid dynamics, electromagnetics, and

structural mechanics. The spectrum of analytical and numerical methods is well doc-

umented by numerous monographs on the subject that have been published during

the past twenty-five years (cf., e.g., Allaire [1], Bendsøe [4], Delfour and Zolesio

[7], Haslinger and Mäkinen [17], Mohammadi and Pironneau [23], Sokolowski and

Zolesio [26]).

In this paper, we will focus on an all-at-once approach by means of primal-dual

interior-point methods. Using classical barrier functions, this results in a parameter
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dependent nonlinear system which is solved by a multilevel predictor-corrector con-

tinuation strategy with an adaptive choice of the continuation steplength along the

central path. The predictor relies on a nested iteration type continuation, whereas

the corrector features an inexact Newton method involving transforming null space

iterations as inner iterations. As a multiscale multiphysics application, we consider

the optimal design of capillary barriers in surface acoustic wave driven microfluidic

biochips used for hybridization and sequencing in genomics.

2 Optimal Design of Processes and Systems

A typical shape optimization problem associated with a time-independent PDE or

a system thereof as the underlying state equation amounts to the minimization of

a shape functional J over bounded domains Ω in Euclidean space Rd . The state

function u is assumed to satisfy a boundary value problem as described by means of

a partial differential operator L, and there may be further equality and/or inequality

constraints on the domain described by some function h.

inf
Ω

J(u,Ω), J(u,Ω) :=
∫

Ω
j(x,u(x)) dx, (1a)

subject to Lu = f in Ω , u = g on Γ , h(Ω)≥ 0. (1b)

The inherent difficulty that the minimization is over a certain class of domains instead

of a set of functions in an appropriate function space can be circumvented by the so-

called shape calculus as developed by Céa, Delfour, Zolésio and others (cf., e.g.,

Delfour and Zolesio [7]). Denoting by Jr(Ω) := J(u(Ω),Ω) the reduced functional,

the necessary optimality conditions can be stated by means of the shape gradient

∇Jr(Ω)[V ] = lim
t→0+

Jr(Ωt(V ))− Jr(Ω)

t
= 〈∇Jr(Ω),V 〉 ,

defined by means of smooth velocity fields V and a family of transformations of Ω
under V such that Ωt(V ) = Tt(Ω),Tt(x) = x(t),x′(t) = V (x(t)). The shape gradient

is a distributional derivative admitting the boundary integral representation

〈∇Jr(Ω),V 〉=
∫

Γ
〈V,ν〉

{
j(x,g)+

∂ p

∂ν

∂ (g−u)

∂ν

}
ds,

where p stands for the adjoint state satisfying the adjoint state equation L∗p =
∂ j/∂u(·,u). Sufficient optimality conditions invoke the shape Hessian which can

also be given a boundary integral representation admitting an interpretation as a

pseudo differential operator of order 1 (cf., e.g., Eppler and Harbrecht [10]). The

analytical investigation of shape Hessians and the development and implementation

of numerical tools based thereon is subject to intensive ongoing research. The nu-

merical methods developed so far require some smoothness of the domain and suffer

from a lack of stability otherwise.
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Since interior-point methods essentially rely on second order information, in the

sequel we will use a more classical approach based on a parametrization of the do-

main by a finite number of design variables. The boundary Γ is represented by a com-

posite Bézier curve using a certain number of Bézier control points α ∈ Rm,m ∈ N,
which serve as design variables. The equality and/or inequality constraints are ex-

pressed by means of the design variables. For the finite element approximation of

(1a)–(1b) we choose α̂ as a reference design and refer to Ω̂ := Ω(α̂) as the as-

sociated reference domain. Then, the actual domain Ω(α) can be obtained from the

reference domain Ω̂ by means of a mapping Ω(α) = Φ(Ω̂ ;α). The advantage of us-

ing the reference domain Ω̂ is that finite element approximations can be performed

with respect to that fixed domain without being forced to remesh for every new set

of the design variables. The finite element discretization of (1a)–(1b) with respect

to a simplicial triangulation Th(Ω) of the computational domain Ω leads to a finite

dimensional optimization problem

inf
uh,α

Jh(uh,α), (2a)

subject to Lhuh = bh, h(α)≥ 0, (2b)

where uh ∈ Rn is the finite element approximation of the state u, Jh(uh,α) the dis-

cretized objective functional and Lhuh = bh the algebraic system arising from the

finite element discretization of the PDE.

The inequality constrained nonlinear programming problem (2a)–(2b) will be

numerically solved by adaptive multilevel path-following primal-dual interior-point

methods as described in the following subsections. For ease of notation, in the sequel

we will drop the subindex h.

3 Adaptive Multilevel Primal-Dual Interior Point Methods

We couple the inequality constraints in (1b) by logarithmic barrier functions with

a barrier parameter µ = 1
τ > 0, τ → ∞, and the equality constraint by a Lagrange

multiplier λ ∈ Rn. This leads to the saddle point problem

inf
u,α

sup
λ

L(τ)(u,λ ,α) , (3)

where L(τ) stands for the Lagrangian

L(τ)(u,λ ,α) = B(τ)(u,α)+ 〈λ ,Lu−b〉. (4)

Here, B(τ)(u,α) is the so-called barrier function as given by

B(τ)(u,α) := J(u,α)− 1

τ
ln(h(α)) . (5)

and 〈·, ·〉 stands for the Euclidean inner product on Rn (for details cf., e.g., Wright

[34]). The central path τ 7−→ x(τ) := (u(τ),λ (τ),α(τ))T is given as the solution of

the nonlinear system
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F(x(τ),τ) =




L
(τ)
u (u,λ ,α)

L
(τ)
λ (u,λ ,α)

L
(τ)
α (u,λ ,α)


= 0 , (6)

where the subindices refer to the derivatives of the Lagrangian with respect to the pri-

mal, the dual, and the design variables. The choice of the barrier parameter strongly

influences the performance of the interior-point method. There are static strategies

with the Fiacco-McCormick approach as the most prominent one (cf. Fiacco and Mc-

Cormick [11]), where the barrier parameter is fixed until an approximate solution

has been obtained, and there is a variety of dynamic update strategies (cf. Armand

et al. [3], El-Bakry et al. [9], Gay et al. [14], Nocedal et al. [24], Tits et al.

[27], Ulbrich et al. [28], Vanderbei and Shanno [29]). Convergence properties of

the Fiacco-McCormick approach have been studied in Byrd et al. [5] and Wächter

and Biegler [30], whereas a convergence analysis of dynamic update strategies has

been addressed in Armand et al. [3], El-Bakry et al. [9], Nocedal et al. [24], Ulbrich

et al. [28].

We consider the solution of (6) by an adaptive continuation method based on the

affine invariant convergence theory of Newton-type methods (see, e.g., Deuflhard

[8], Weiser and Deuflhard [31]).

The adaptive continuation method is a predictor-corrector method with an adap-

tively determined continuation step size in the predictor and Newton’s method as a

corrector. It relies on the affine invariant convergence theory of Newton and Newton-

type methods and ensures that the iterates stay within a neighborhood (contraction

tube) of the central path so that convergence to a local minimum of the original min-

imization problem can be achieved (cf. Fig. 1).

.

b

x(τ0)

Barrier Path

x
∗

∆τ
(0)
k δx(τk)

x̃(τk)

Fig. 1. Predictor step of the adaptive continuation method.

Predictor Step

The predictor step relies on tangent continuation along the trajectory of the Davi-

denko equation

Fx(x(τ),τ)x′(τ) =−Fτ(x(τ),τ) (7)
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and amounts to the implementation of an explicit Euler step: Given some approxi-

mation x̃(τk) at τk > 0, compute x̃( j0)(τk+1), where τk+1 = τk + ∆τ
( j)
k , according to

Fx(x̃(τk),τk)δx(τk) =−Fτ(x̃(τk),τk) , (8a)

x̃( j0)(τk+1) = x̃(τk)+∆τ
( j)
k δx(τk) , (8b)

starting with j = 0 ( j ≥ 1 only if required by the correction step (see below)). We

use ∆τ
(0)
0 = ∆τ0 for some given initial step size ∆τ0, whereas for k≥ 1 the predicted

step size ∆τ
(0)
k is chosen by

∆τ
(0)
k :=

( ‖∆x( j0)(τk)‖
‖x̃(τk)− x̃( j0)(τk)‖

√
2−1

2Θ(τk)

)1/2

∆τk−1 , (9)

where ∆τk−1 is the computed continuation step size, ∆x( j0)(τk) is the first Newton

correction (see below), and Θ(τk) < 1 is the contraction factor associated with a

successful previous continuation step.

Corrector Step

As a corrector, we use Newton’s method applied to

F(x(τk+1),τk+1) = 0

with x̃( j0)(τk+1) from (8b) as a start vector. In particular, for ℓ≥ 0 (Newton iteration

index) and jℓ ≥ 0 ( j being the steplength correction index) we compute ∆x( jℓ)(τk+1)
according to

Fx(x̃
( jℓ)(τk+1),τk+1) ∆x( jℓ)(τk+1) =−F(x̃( jℓ)(τk+1),τk+1), (10)

update x̃( jℓ+1)(τk+1) := x̃( jℓ)(τk+1) + ∆x( jℓ)(τk+1) and compute ∆x
( jℓ)(τk+1) as the

associated simplified Newton correction

Fx(x̃
( jℓ)(τk+1),τk+1)∆x

( jℓ)(τk+1) =−F(x̃( jℓ)(τk+1)+∆x( jℓ)(τk+1),τk+1).

We monitor convergence of Newton’s method by means of

Θ ( jℓ)(τk+1) := ‖∆x
( jℓ)(τk+1)‖/‖∆x( jℓ)(τk+1)‖ .

In case of successful convergence, we set x̃(τk+1) := x̃( jℓ)(τk+1) with ℓ being the

current Newton iteration index, accept the current step size ∆τk := ∆τ
( j)
k with current

steplength correction index j and proceed with the next continuation step. However,

if the monotonicity test

Θ ( jℓ)(τk+1) < 1 (11)
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Fig. 2. Correction step of the adaptive continuation method.

fails for some jℓ ≥ 0, the predicted steplength ∆τ
( j)
k has been chosen too large so

that the predicted solution x̃( j0)(τk+1) is not situated within the Kantorovich neigh-

borhood of x(τk+1), i.e., it is outside the contraction tube around the central path (cf.

Fig. 2). The corrector step provides a correction of the steplength for the tangent di-

rection δx(τk) such that the new iterate stays within the contraction tube. To do so,

the continuation step from (8b) has to be repeated with the reduced step size

∆τ
( j+1)
k :=

( √
2−1

g(Θ ( jℓ))

)1/2

∆τ
( j)
k ,

g(Θ) :=
√

Θ +1−1

(12)

until we either achieve convergence or for some prespecified lower bound ∆τmin

observe

∆τ
( j+1)
k < ∆τmin .

In the latter case, we stop the algorithm and report convergence failure.

The Newton steps are realized by an inexact Newton method featuring right-

transforming iterations (cf., e.g., Hoppe et al. [18], Hoppe and Petrova [20]). For a

discussion of the impact of the inexactness on the pathfollowing we refer to Weiser

and Deuflhard [31, sec. 3.2]. The derivatives occurring in the KKT conditions and

the Hessians are computed by automatic differentiation (cf., e.g., Griewank [15]).

We perform the predictor-corrector scheme in a multilevel framework with re-

spect to a hierarchy of discretizations. We describe the multilevel approach in case

of a two-level scheme with the levels ℓ−1 and ℓ (cf. Fig. 3). Since in multigrid con-

tinuation methods it is advantageous to use smaller continuation steps on the coarser

grids (cf., e.g., Hackbusch [16], Hoppe and Mittelmann [19]), the prediction is done

by nested iteration in such a way that some adaptive continuation steps are performed

on the coarser level ℓ− 1 before a predicted value is computed on the finer level ℓ.

The corrector is a Newton multigrid method incorporating a two-level PDE solver

featuring appropriate smoothers. The iterates are checked for acceptance by the level

ℓ monotonicity test. In some more detail, we illustrate the two-level scheme in case

of two continuation steps on level ℓ− 1. We assume that approximations xℓ−1(τk)
and xℓ(τk) are available for some continuation parameter τk. Firstly, we perform 2

continuation steps with an adaptive choice of the continuation steplengths. Secondly,
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we use the the level ℓ−1 approximations xℓ−1(τk) and xℓ−1(τk+2) as well as the level

1 approximation xℓ(τk) to obtain a level 1 prediction at τk+2. This approximation is

then corrected by the two-level Newton multigrid scheme and checked for accep-

tance by the level ℓ monotonicity test. In the general case of more than 2 levels, the

multilevel predictor-corrector continuation method consists of a recursive applica-

tion of the two-level scheme.

level 0

level 1

τ

levels

τk τk+1 τk+2

P
1
0

x(0)(τk) x(0)(τk+1) x(0)(τk+2)

x(1)(τk) (given) x̂(1)(τk+2) (predicted)

Fig. 3. Two-level predictor-corrector scheme

4 Numerical Results

Microfluidic biochips are used in pharmaceutical, medical and forensic applications

as well as in academic research and development for high throughput screening,

genotyping and sequencing by hybridization in genomics, protein profiling in pro-

teomics, and cytometry in cell analysis (cf., e.g., Pollard and Castrodale [25]). Re-

cent nanotechnological devices are surface acoustic wave driven biochips with inte-

grated fluidics on top of the chip consisting of a lithographically produced network

of channels and reservoirs (see Fig. 4 (left)). The core of the technology are nanop-

umps featuring surface acoustic waves generated by electric pulses of high frequency.

These waves propagate like a miniaturized earthquake, enter the fluid filled channels

and thus cause a flow which transports the DNA or protein containing liquid along

the network to a reservoir where the chemical analysis is performed (see, e.g., Wix-

forth et al. [32, 33]. Between the channels and the reservoirs are capillary barriers

(cf. Fig. 4 (right)) which have to be designed in such a way that a precise filling of

the reservoirs is guaranteed.

Mathematical models for SAW biochips are based on the linearized equations of

piezoelectricity in Q1 := (0,T1)×Ω1
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Fig. 4. Microfluidic biochip (left) and capillary barrier (right)

ρ1
∂ 2ui

∂ t2
− ∂

∂x j

ci jkl

∂uk

∂xl

− ∂

∂x j

eki j

∂Φ

∂xk

= 0, (13a)

∂

∂x j

e jkl

∂uk

∂xl

− ∂

∂x j

ε jk

∂Φ

∂xk

= 0 (13b)

with appropriate initial conditions at t = 0 and boundary conditions on Γ1 := ∂Ω1.

Here, ρ1 and u = (u1,u2,u3)
T denote the density of the piezoelectric material and

the mechanical displacement vector. Moreover, ε = (εi j) stands for the permittivity

tensor and Φ for the electric potential. The tensors c = (ci jkl) and e = (eikl) refer to

the forth order elasticity tensor and third-order piezoelectric tensor, respectively.

The modeling of the micro-fluidic flow is based on the compressible Navier-

Stokes equations in Q2 := (0,T2)×Ω2

ρ2

(
∂v

∂ t
+(v ·∇)v

)
=−∇p+η∆v+

(
ζ +

η

3

)
∇(∇ ·v) , (14a)

∂ρ2

∂ t
+∇ · (ρ2v) = 0 , (14b)

v(x+u(x, t), t) =
∂u

∂ t
(x, t) on (0,T2)×Γ2 (14c)

with suitable initial conditions at t = 0. Here, ρ2,v = (v1,v2,v3)
T and p are the den-

sity of the fluid, the velocity, and the pressure. η and ζ refer to the shear and the

bulk viscosity. The boundary conditions include the time derivative ∂u/∂ t of the

displacement of the walls Γ2 = ∂Ω2 of the microchannels caused by the surface

acoustic waves. The induced fluid flow involves extremely different time scales. The

damping of the jets created by the SAWs happens on a time scale of nanoseconds,

whereas the resulting acoustic streaming reaches an equilibrium on a time scale of

milliseconds. We perform a separation of the time-scales by homogenization using

an expansion v = v0 + εv′ + ε2v′′ + O(ε3) of the velocity v in a scale parameter

ε > 0 representing the maximal displacement of the walls and analogous expan-

sions of the pressure p and the density ρ2. We set v1 := εv′,v2 := ε2v′′ and de-

fine pi,ρ2,i,1 ≤ i ≤ 2, analogously. Time-averaging the second order (in ε) system

according to 〈w〉 := T−1
∫ t0+T

t0
wdt,T := 2π/ω , we arrive at the following Stokes
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equations in Ω2

−η∆v2−
(

ζ +
η

3

)
∇(∇ ·v2)+∇p2 =

〈
−ρ2,1

∂v1

∂ t
−ρ2,0(∇v1)v1

〉
, (15a)

ρ2,0∇ ·v2 = 〈−∇ · (ρ2,1v1)〉 , (15b)

v2 =−〈(∇v1)u〉 on Γ2 . (15c)

which describe the stationary flow pattern, called acoustic streaming, resulting after

the relaxation of the high frequency surface acoustic waves (for further details we

refer to Gantner et al. [13], Köster [22]).

Table 1. History of the adaptive multilevel predictor-corrector strategy (Capillary barriers, 4

Levels)

level k τ ∆τ ∆J

1 0 2.0E+02

2.83E+00

1 6.3E+02 4.3E+02 1.87E-05

2 1.1E+03 4.9E+02 3.40E-06

3 1.6E+03 5.1E+02 1.09E-06

4 2.3E+03 6.8E+02 5.70E-07

5 3.5E+03 1.1E+03 3.63E-07

6 5.3E+03 1.9E+03 1.99E-07

7 8.8E+03 3.5E+03 1.02E-07

8 1.6E+04 7.3E+03 4.50E-08

2 2 1.1E+03 9.2E+02

4 2.3E+03 1.2E+03

6 5.3E+03 3.0E+03

8 1.6E+04 1.1E+04

3 4 2.3E+03 2.1E+03

8 1.6E+04 1.4E+04

4 8 1.6E+04 1.6E+04

We have considered the optimal design of a capillary barrier for a domain con-

sisting of part of a microchannel close to a reservoir with two passive outlet valves

to allow for an outflow in case of the stopping mode of the barrier (cf. Fig. 5). The

objective functional J has been chosen of tracking type according to

J(v2, p2,α) :=
1

2

∫

Ω(α)
|v2−vd

2 |2 dx+
1

2

∫

Ω(α)
|p2− pd

2 |2 dx

subject to the Stokes system (15a)-(15c) with Signorini type boundary conditions

at the junction between the microchannel and the reservoir. We have used m = 16

Bézier control points of a Bézier curve representation of the barrier as design vari-

ables subject to bilateral constraints. Table 1 contains the history of the multi-

level interior-point method described in the previous section in case of four levels
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Fig. 5. Optimally designed capillary barrier:Velocity profile in the flow mode (left) and in the

stopping mode (right)

1 ≤ ℓ ≤ 4 with 2362 degrees of freedom (DOFs) on the coarsest grid (level 1) and

141634 DOFs on the finest grid (level 4). The number k indicates the continuation

steps, τk and ∆τk := τk− τk−1 refer to the inverse of the barrier parameter µk and

the increment in τk, and ∆Jk is the difference between the corresponding values of

the objective functional. We have performed two continuation steps on a coarser

grid before proceeding by nested iteration to the next finer grid, and we have used

|∆Jk|< TOL with TOL := 1.0E−07 as a termination criterion for the continuation

process. Fig. 5 displays the optimal design of the barrier and the associated velocity

profiles in the flow mode (fluid flow into the reservoir) and in the stopping mode

(backflow). For further results and a comparison with other continuation methods

and update strategies of the barrier parameter we refer to Antil, Hoppe and Linsen-

mann [2].
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