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1 Introduction

In the classical Schwarz framework for conforming approximations of nonsymmet-

ric and indefinite problems [5, 6] the finite element space is optimally decomposed

into the sum of a finite number of uniformly overlapped, two-level subspaces. In

each iteration step, a coarse mesh problem and a number of smaller linear systems,

which correspond to the restriction of the original problem to subregions, are solved

instead of the large original system of equations. Based on this decomposition, do-

main decomposition methods of three basic type—additive, multiplicative and hy-

brid Schwarz methods—have been studied in the literature (cf. [4, 5, 6]). In [1, 2]

it was shown that for discontinuous Galerkin (DG) approximations of purely ellip-

tic problems optimal nonoverlapping Schwarz methods (which have no analogue

in the conforming case) can be constructed. Moreover, it was proved that they ex-

hibit spectral bounds analogous to the one obtained with conforming finite element

approximations in the case of “small” overlap, making Schwarz methods particu-

larly well-suited for DG preconditioning. Motivated by the above considerations, we

study a class of nonoverlapping Schwarz preconditioners for DG approximations of

convection-diffusion equations. The generalized minimal residual (GMRES) Krylov

space-based iterative solver is accelerated with the proposed preconditioners. We dis-

cuss the issue of convergence of the resulting preconditioned iterative method, and

demonstrate through numerical computations that the classical Schwarz convergence

theory cannot be applied to explain theoretically the converge observed numerically.

2 Statement of the Problem and its DG Approximation

Given a bounded polyhedral domain Ω ⊆Rd , d = 2,3, f ∈L2(Ω), and g∈H1/2(∂Ω),
we consider the following elliptic convection-diffusion problem with constant coef-
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ficients:

−ε∆u+β ·∇u = f in Ω , u = g on Γ ≡ ∂Ω , (1)

where ε > 0 is the diffusion coefficient and β ∈ Rd is the velocity field.

We consider, for simplicity, shape-regular quasi-uniform partitions Th of Ω with

granularity h > 0, where each K ∈ Th is the affine image of a fixed master element

K, i.e., K = FK(K), where K is either the open unit d-simplex or the open unit d-

hypercube in Rd , d = 2,3. We denote by Fh the set of all faces of Th, and for F ∈ Fh

we set hF = diam(F). The symbol FB
h will denote the set of all faces that lie on

the boundary, Γ . For a given approximation order ℓ ≥ 1, we define the discontinu-

ous Galerkin finite element space Vh = {v ∈ L2(Ω) : v|K ◦FK ∈Mℓ(K) ∀K ∈ Th},
where Mℓ(K) is either the space of polynomials of degree at most ℓ on K, if K is the

reference d-simplex, or the space of polynomials of degree at most ℓ in each variable

on K, if K is the reference d-hypercube.

We denote by ∇h the elementwise application of the operator ∇, and, for v ∈ Vh

and K ∈ Th, v+ (respectively, v− ) denotes the interior (respectively, exterior) trace of

v defined on ∂K (respectively, ∂K \Γ ). Given K ∈ Th, the inflow and outflow parts

of ∂K are defined

∂−K := {x ∈ ∂K : β (x) ·nK(x) < 0}, ∂+K := {x ∈ ∂K : β (x) ·nK(x)≥ 0},

respectively, where nK denotes the unit outward normal vector to ∂K.

For a parameter α ≥ αmin > 0 (at our disposal), and adopting the standard nota-

tion {{·}} for the face-average and [[·]] for the jump operator [3], we define the bilinear

form Bh(·, ·) : Vh×Vh→ R as

Bh(u,v) =
∫

Ω
ε∇hu ·∇hvdx− ∑

F∈Fh

∫

F
{{ε∇hu}} · [[v]]ds

− ∑
F∈Fh

∫

F
[[u]] · {{ε∇hv}}ds+ ∑

F∈Fh

∫

F
α ε h−1

F [[u]] · [[v]]−
∫

Ω
uβ ·∇hvdx

+ ∑
K∈Th

∫

∂+K
(β ·nK)u+v+ ds+ ∑

K∈Th

∫

∂−K\Γ
(β ·nK)u−v+ ds.

Then, the DG approximation of problem (1) reads as follows:

Find uh ∈Vh such that Bh(uh,v) = Fh(v) ∀v ∈Vh, (2)

where the functional Fh(·) : Vh→ R is given by

Fh(v) :=
∫

Ω
f vdx+ ∑

F∈FB
h

∫

F
ε g∇v+ ·nK ds

+ ∑
F∈FB

h

∫

F
ε α h−1

F gv+ ds+ ∑
K∈Th

∫

∂−K∩Γ
(β ·nK)gv+ ds.
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Given a basis of Vh, any function v ∈ Vh is uniquely determined by a set of degrees

of freedom. Here and in the following, we use boldface notation to denote elements

of the spaces of degrees of freedom (vectors in Rn, and matrices in Rn×Rn). If B

is the stiffness matrix associated with the bilinear form Bh(·, ·) and the given basis,

problem (2) can be rewritten as the system of linear equations Bu = F. In order to

solve this system of linear equations efficiently by a Krylov space-based iterative

solver (such as, for example, the GMRES method), suitable preconditioners have to

be employed to accelerate the iterative scheme.

3 Nonoverlapping Schwarz Methods

We consider three levels of nested partitions of the domain Ω satisfying the previous

assumptions: a subdomain partition TN consisting of N nonoverlapping subdomains

Ωi, a coarse partition TH (with mesh size H) and a fine partition Th (with mesh

size h). Next we introduce the key ingredients of the definition of the Schwarz pre-

conditioners.

Local Solvers. For i = 1, . . . ,N, we define the local DG spaces by

V i
h := {v ∈Vh : v|K = 0 ∀K ∈ Th, K ⊂Ω r Ωi}.

We note that a function in V i
h is discontinuous and, as opposed to the case of con-

forming approximations, does not in general vanish on ∂Ωi. The classical extension

(injection) operator from V i
h to Vh is denoted by RT

i : V i
h −→ Vh, i = 1, . . . ,N. We

define the local solvers Bi : V i
h×V i

h −→ R as

Bi(ui,vi) := Bh(R
T
i ui,R

T
i vi) ∀ui,vi ∈V i

h, i = 1, . . . ,N.

Remark 1. Approximate local solvers, such as the ones proposed in [1, 2], could also

be considered for the definition of the local components of the preconditioner.

Coarse Solver. For a given approximation order 0≤ p≤ ℓ we introduce the coarse

space VH ≡ V 0
h := {v0 ∈ L2(Ω) : v0|K ◦FK ∈Mℓ(K) ∀K ∈ TH}, and we define the

coarse solver B0 : V 0
h ×V 0

h −→ R by

B0(u0,v0) := Bh(R
T
0 u0,R

T
0 v0) ∀u0,v0 ∈V 0

h ,

where RT
0 : V 0

h −→Vh is the classical injection operator from V 0
h to Vh.

For 0≤ i≤ N, let the projection operators Ti : Vh −→V i
h ⊂Vh be given by

Bi(Tiu,vi) := Bh(u,vi) ∀vi ∈V i
h.

The additive and multiplicative Schwarz operator are defined by

Tad :=
N

∑
i=0

Ti, Tmu := I− (I−TN)(I−TN−1) · · ·(I−T0),
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respectively (cf. [5, 6]). The multiplicative Schwarz method is less amenable to par-

allelization than the additive method because the presence of the coarse solver T0,

which cannot be handled in parallel with the other local subproblem solvers, leads to

a bottleneck for the whole algorithm. Motivated by the above observations, we also

consider a hybrid operator in which the global operator T0 is incorporated additively

relative to the rest of the local solvers (see [4]):

Thy := T0 + I− (I−TN)(I−TN−1) · · ·(I−T1).

The Schwarz operators can be written as products of suitable preconditioners, namely

Mad, Mmu or Mhy, and B. Then, the Schwarz method consists of solving, by a suit-

able Krylov space-based iterative solver, the preconditioned system of equations

MBu = MF, where M is either Mad, Mmu or Mhy.

4 The Issue of Convergence

The abstract analysis of Schwarz methods for conforming approximations to non-

symmetric elliptic problems, originally carried out by Cai and Widlund in [6], relies

upon the GMRES convergence bounds of Eisenstat et al. [7]. According to [7], the

GMRES method applied to the preconditioned system of equations does not stag-

nate (i.e., the iterative method makes some progress in reducing the residual at each

iteration step) provided that the symmetric part of T (where T is one of the Schwarz

operators introduced in Sec. 3) is positive definite, and T is uniformly bounded. That

is,

cp(T ) := inf
v∈Vh
v 6=0

Sh(v,T v)

Sh(v,v)
> 0, Cp(T ) := sup

v∈Vh
v 6=0

‖T v‖h
‖v‖h

≤C, (3)

where ‖ · ‖h is a suitable (mesh-dependent) norm on Vh in which the bilinear form

Bh(·, ·) is continuous and coercive, and where Sh(·, ·) denotes the symmetric part of

Bh(·, ·). While the second condition can usually be shown to hold without difficulties,

the first condition cannot, in general, be guaranteed. Indeed, as we demonstrate by

numerical computations, cp(T ) may be negative even in generic, non-pathological,

cases. In Table 1 we show the computed values of cp(Tad) and cp(Tmu) obtained

with two choices of the global Péclet number Pe := ‖β‖∞|Ω |/ε (that relates the

rate of convection of a flow to its rate of diffusion) for the first test case considered

in Section 5. Even though GMRES applied to the preconditioned systems does not

stagnate and, in fact, converges in only a few iterations (cf. Section 5), cp(T ) < 0

once the spacing of the fine grid is sufficiently small.

Remark 2. Closer inspection reveals that, in the case of elliptic convection-dominated

diffusion equations, the theory in [6] is far from satisfactory since, on the one hand,

it relies upon the GMRES bounds from [7] that only provide sufficient conditions for

non-stagnation of GMRES and, on the other hand, it requires the skew-symmetric

part of the operator to be “small” relative to the symmetric part (typically a low-

order compact perturbation). Clearly, such a requirement cannot be satisfied in the
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Table 1. Estimate of cp(T ): ℓ = p = 1, N = 16, Cartesian grids.

(a) cp(Tad): ε = 10−1, β = (1,1)T

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.077 -0.008 -0.047 -0.067

H0/2 - 0.101 0.037 0.005

H0/4 - - 0.117 0.050

H0/8 - - - 0.119

(b) cp(Tmu): ε = 10−3, β = (1,1)T

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.225 -0.553 -1.484 -2.795

H0/2 - 0.114 -0.628 -1.554

H0/4 - - 0.114 -0.570

H0/8 - - - 0.077

convection-dominated case. Similar conclusions have been drawn in [1, 2] in the

case of nonoverlapping preconditioners for nonsymmetric DG approximations of the

Laplace operator (where the skew-symmetric part of the operator happens to be of

the same order as the symmetric part).

Remark 3. The comments above also apply in to the case of generous overlapping

partitions (cf. [8]) under suitable additional assumptions on the size of the coarse

mesh, i.e., H < H0. Closer inspection reveals that H0 strongly depends on the size

of the global Péclet number, making the analysis inapplicable in the convection-

dominated case.

5 Numerical Experiments
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Fig. 1. (a) Subdomain ordering for N = 16; (b) initial coarse (solid line) and fine (dashed line)

meshes; (c) the exact solution (4) for ε = 10−2 (right).

We investigate the performance of our preconditioners while varying h, H and the

Péclet number. We use a uniform subdomain partition of Ω = (0,1)2 consisting of 16

squares ordered as in Fig. 1(a). The initial coarse and fine refinements are depicted

in Fig. 1(b). We denote by H0 and h0 the corresponding initial coarse and fine mesh

sizes, respectively, and we consider n = 1,2,3 successive uniform refinements of the

initial grids. The linear systems of equations have been solved by GMRES with a
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(relative) tolerance set equal to 10−6 allowing a maximum of 100 (respectively, 600)

iterations for the preconditioned (respectively, unpreconditioned) systems.

We set β = (1,1)T and adjust the source term f and the boundary condition so

that the exact solution is given by

u(x,y) = x+ y− xy+
1

1− e−1/ε

[
e−1/ε − e−(1−x)(1−y)/ε

]
. (4)

We note that for 0 < ε ≪ 1, i.e., for Pe≫ 1, the solution exhibits boundary layers

along x = 1 and y = 1 (cf. Fig. 1(c) for ε = 10−2).

Table 2. GMRES iteration counts: ε = 1.

Additive Multiplicative Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 20 30 40 54 8 13 17 24 11 15 20 27

H0/2 - 19 27 37 - 7 10 13 - 11 15 20

H0/4 - - 20 28 - - 6 8 - - 12 17

H0/8 - - - 19 - - - 5 - - - 12

#iter(B) 58 109 204 371 58 109 204 371 58 109 204 371

Table 3. GMRES iteration counts: ε = 10−1.

Additive Multiplicative Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 23 34 48 62 11 15 21 29 12 17 24 30

H0/2 - 20 30 41 - 8 11 16 - 12 16 20

H0/4 - - 21 29 - - 7 10 - - 12 17

H0/8 - - - 19 - - - 6 - - - 11

#iter(B) 59 110 209 396 59 110 209 396 59 110 209 396

We compare the GMRES iteration counts for the additive, multiplicative and

hybrid Schwarz preconditioners for different values of the Péclet number, working

for the sake of simplicity with approximations with ℓ = p = 1. The computed iter-

ation counts obtained for ε = 1,10−1,10−3,10−4 are shown in Tables 2–5, respec-

tively. Clearly, the multiplicative and the hybrid Schwarz preconditioners perform

far better than the additive preconditioner. The results in Tables 2–5 show that for

small Péclet numbers the iteration counts seem to increase with the Péclet number;

whereas, whenever the problem becomes convection-dominated, i.e., for Pe≫ 1, the

iteration counts needed for achieving the fixed tolerance decrease with the increase of

the Péclet number. Moreover, in the convection-dominated regime the performance

of the additive nonoverlapping preconditioner is comparable with the one in [8] in
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Table 4. GMRES iteration counts: ε = 10−3.

Additive Multiplicative Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 15 21 26 33 6 8 10 14 8 10 12 16

H0/2 - 17 24 32 - 5 8 13 - 8 11 15

H0/4 - - 18 27 - - 6 10 - - 9 14

H0/8 - - - 20 - - - 5 - - - 10

#iter(B) 41 68 115 213 41 68 115 213 41 68 115 213

Table 5. GMRES iteration counts: ε = 10−4.

Additive Multiplicative Hybrid

H ↓ h→ h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 14 16 17 18 3 4 4 6 6 6 7 8

H0/2 - 14 16 18 - 3 4 5 - 6 6 7

H0/4 - - 14 17 - - 3 4 - - 6 7

H0/8 - - - 14 - - - 4 - - - 6

#iter(B) 40 67 119 215 40 67 119 215 40 67 119 215

the overlapping case, making the nonoverlapping version competitive in practical

applications.

Table 6. GMRES iteration counts: multiplicative and hybrid (between parenthesis) Schwarz

preconditioners.

ε = 10−1 ε = 10−4

H ↓ h→ h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 13 (15) 20 (21) 27 (29) 36 (39) 5 (8) 6 (9) 8 (10) 10 (12)

H0/2 - 11 (15) 16 (19) 21 (26) - 5 (7) 6 (10) 9 (12)

H0/4 - - 10 (13) 14 (19) - - 5 ( 9) 7 (11)

H0/8 - - - 8 (11) - - - 6 (10)

#iter(B) 79 152 290 551 39 65 113 203

Finally, we investigate the effect of the subdomain ordering on the performance

of the Schwarz preconditioner. We set β = (−1,−1)T, and we choose as exact solu-

tion one that is analogous to the exact solution considered so far but now such that

u exhibits boundary layers along x = 0 and y = 0 for 0 < ε ≪ 1, so that the subdo-

mains turn out to be ordered “downwind” (cf. Fig. 1(a)). In Table 6 we report the

GMRES iteration counts obtained with the multiplicative and hybrid (in parenthesis)

Schwarz method using ℓ = p = 1. As expected, the subdomain ordering does affect
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the performance of the preconditioner and “downwind” ordering of subdomains can

lead to an increase in the number of GMRES iterations.

Acknowledgement. This work was carried out while the first author was a visiting student at

the Oxford University Computing Laboratory. She thanks OUCL for the kind hospitality.

References

[1] Antonietti, P.F.: Ayuso, B.: Schwarz domain decomposition preconditioners for

discontinuous Galerkin approximations of elliptic problems: non-overlapping

case. M2AN Math. Model. Numer. Anal., 41(1):21–54, 2007.

[2] Antonietti, P.F.: Ayuso, B.: Multiplicative Schwarz methods for discontinu-

ous Galerkin approximations of elliptic problems. M2AN Math. Model. Numer.

Anal., 42(3):443–469, 2008.

[3] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of dis-

continuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal.,

39(5):1749–1779 (electronic), 2001/02.

[4] Cai, X.-C.: An optimal two-level overlapping domain decomposition method for

elliptic problems in two and three dimensions. SIAM J. Sci. Comput., 14(1):239–

247, 1993.

[5] Cai, X.-C., Widlund, O.B.: Domain decomposition algorithms for indefinite

elliptic problems. SIAM J. Sci. Statist. Comput., 13(1):243–258, 1992.

[6] Cai, X.-C., Widlund, O.B.: Multiplicative Schwarz algorithms for some nonsym-

metric and indefinite problems. SIAM J. Numer. Anal., 30(4):936–952, 1993.

[7] Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for

nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20(2):345–

357, 1983.

[8] Lasser, C., Toselli, A.: An overlapping domain decomposition preconditioner for

a class of discontinuous Galerkin approximations of advection-diffusion prob-

lems. Math. Comp., 72(243):1215–1238 (electronic), 2003.


