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Summary. A new family of linearly implicit fractional step methods is proposed for the effi-

cient numerical solution of a class of nonlinear time-dependent reaction-diffusion equations.

By using the method of lines, the original problem is first discretized in space via a mimetic

finite difference technique. The resulting differential system of stiff nonlinear equations is lo-

cally decomposed by suitable Taylor expansions and a domain decomposition splitting for the

linear terms. This splitting is then combined with a linearly implicit one-step scheme belong-

ing to the class of so-called fractional step Runge-Kutta methods. In this way, the original

problem is reduced to the solution of several linear systems per time step which can be triv-

ially decomposed into a set of uncoupled subsystems. As compared to classical domain de-

composition techniques, our proposal does not require any Schwarz iterative procedure. The

convergence of the designed method is illustrated by numerical experiments.

1 Introduction

In this paper, we consider nonlinear parabolic initial-boundary value problems of the

following form: Find ψ : Ω × [0,T ]→ R such that





∂ψ(x,t)
∂ t

= div(K(ψ)gradψ)+g(x, t,ψ)+ f (x, t), (x, t) ∈Ω × (0,T ],

ψ(x,0) = ψ0(x), x ∈Ω ,

ψ(x, t) = ψD(x, t), (x, t) ∈ ∂Ω × [0,T ],

(1)

where Ω ⊆R2, K(ψ) is a 2×2 nonlinear symmetric positive-definite tensor, g(x, t,ψ)
is a nonlinear reaction term and f (x, t) denotes the source/sink term. Initial and

boundary data are given by ψ0(x) and ψD(x, t), respectively. For the sake of sim-

plicity, only Dirichlet boundary conditions are considered.

The numerical solution of problem (1) is carried out via the method of lines, thus

combining a spatial discretization stage with the subsequent time integration process.

For the first stage, we use a mimetic finite difference (MFD) method formulated on
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logically rectangular meshes. Our method extends the ideas discussed in [7] for lin-

ear parabolic problems to the nonlinear case (1) by introducing a quadratic bivariate

interpolation approach in the discretization process. As for the time integration, the

resulting system of nonlinear ordinary differential equations is locally decomposed

by applying suitable Taylor expansions and a domain decomposition splitting for

the linear terms. This kind of splitting was used in [2] for solving linear parabolic

problems and has been recently surveyed by [5] in the context of regionally-additive

schemes. Here, we combine such a technique with an extension of the class of lin-

early implicit fractional step methods designed and analyzed in [3, 4]. The totally

discrete scheme is shown to be second-order convergent in both space and time un-

der a mild stability restriction.

The remainder of the paper is divided into three sections. The first two briefly de-

scribe the spatial discretization and time integration processes. Also in Sec. 3, a lin-

early implicit splitting scheme due to Hundsdorfer and Verwer (cf. [1]) is introduced

for comparison purposes. Finally, in the last section, some experiments illustrate the

numerical behaviour of the proposed method.

2 Spatial Discretization

The spatial discretization of problem (1) is based on an MFD scheme derived from

the support-operator method. This method, initially proposed in [6] and subsequently

discussed in [7], provides a methodology for constructing discrete analogues of the

invariant first-order differential operators appearing in the original problem (i.e., di-

vergence and gradient).

Let us consider a discretization of Ω by means of a logically rectangular grid Ωh,

where h denotes the spatial mesh size. The first step in the MFD technique consists

of choosing suitable degrees of freedom for semidiscrete scalar and vector functions:

in this work, the former are defined at the cell centers of the mesh, while the latter

are considered to be at the mesh nodes. We shall denote by Vh and Ṽh the vector

spaces of semidiscrete scalar and vector functions defined on the cell centers and

nodes of Ωh, respectively. As a second step, we equip these spaces with suitable

scalar products, namely [·, ·]Vh
and [·, ·]Ṽh

(see [7] for details). The third step is to

derive a discrete approximation to the divergence operator, divh : Ṽh → Vh, which

we shall refer to as the prime operator. Such an approximation is provided by the

Gauss divergence theorem. Finally, the fourth step lies in defining a discrete gradient

operator, gr̃adh : Vh→ Ṽh, as the adjoint to the discrete divergence divh with respect

to the previous scalar products, i.e.:

[divh ũh,ϕh]Vh
≡ [ũh,−gr̃adh ϕh]Ṽh

∀ϕh ≡ ϕh(t) ∈Vh, ∀ ũh ≡ ũh(t) ∈ Ṽh. (2)

Since gr̃adh is somehow deduced from the so-called prime operator, we call it the

derived operator. Within this framework, we shall denote by ψh(t) and gh(t,ψh) the

semidiscrete approximations to the scalar functions ψ(x, t) and g(x, t,ψ) at the cell

centers of the mesh. Analogously, fh(t)≡ rh f (x, t), where rh denotes the restriction

operator to the cell centers of Ωh.
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The standard MFD method formulated in [7] is defined for linear problems in

which K ≡ K(x) does not depend on ψ . However, the more general case consid-

ered here requires an extension of this method to deal with the nonlinearity arising

from K(ψ). Let us briefly present the main features of such an extension. Recall-

ing problem (1) and once we have defined the discrete operators divh and gr̃adh, we

need to approximate the matrix-vector product K(ψ)gradψ . For this product to be

well-posed, since the components of gr̃adh ψh are given at the mesh nodes (as de-

rived from (2)), the elements of K(ψ) must also be evaluated at this location. Let us

denote by ψ̃h the approximations to the unknown ψ at the nodes of Ωh. Then, the

discretization of tensor K(ψ), given by K̃h(ψ̃h), is obtained by suitably evaluating its

elements at ψ̃h. As a result, the second-order nonlinear term divh(K̃h(ψ̃h)gr̃adh ψh)
possess a local stencil involving nine cell-centered values ψh (as described in [7]) as

well as four nodal values ψ̃h (due to the discrete tensor K̃h(ψ̃h)). In order to elimi-

nate these values from the local stencil, we apply a quadratic bivariate interpolation

method which permits to obtain ψ̃h as a linear combination of the corresponding

nine values of ψh. Consequently, the discrete diffusion operator will be given by

Ah(·)≡ divh(K̃h(·)gr̃adh ·) : Vh→Vh and the local stencil of Ah(ψh) will thus have a

compact nine-cell structure.

The discretization process described in this section gives rise to a stiff nonlinear

differential system of the form:

ψ ′h(t) = Fh(t,ψh)≡ Ah(ψh)+gh(t,ψh)+ fh(t), t ∈ (0,T ], (3)

with initial condition ψh(0) = ψh,0 ≡ rhψ0(x). The MFD method has been theoreti-

cally proved to be second-order convergent when applied to linear elliptic problems

with either Dirichlet or Neumann conditions discretized on smooth grids. Also if

linear parabolic problems are considered, the numerical behaviour of this spatial dis-

cretization technique shows convergence of order 2 (cf. [7]).

3 Time Integration

In this section, we introduce a family of linearly implicit time integrators based on a

splitting of the semidiscrete problem derived in (3). For that purpose, let us first con-

sider a decomposition of the spatial domain Ω into s overlapping subdomains, i.e.

Ω =
⋃s

j=1 Ω j, where Ω j =
⋃s j

k=1 Ω jk such that Ω jk ∩ Ω jℓ = /0 if k 6= ℓ. Associated

to such a decomposition, we construct a sufficiently smooth partition of unity con-

sisting of s functions ρ j : Ω → [0,1], for j = 1,2, . . . ,s, which satisfy the following

properties:

ρ j(x) =





0 if x ∈Ω \Ω j,

h j(x) if x ∈⋃s
k=1
k 6= j

(Ω j ∩Ωk),

1 if x ∈Ω j \
⋃s

k=1
k 6= j

(Ω j ∩Ωk),

(4)

where 0≤ h j(x)≤ 1 and ∑s
j=1 h j(x) = 1 for any x located in the overlapping regions.

From these restrictions, it is obvious that Ω j ≡ supp(ρ j(x)), for j = 1,2, . . . ,s.
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In order to introduce the time integration in a simple way, we divide the time

interval [0,T ] into subintervals [tn, tn+1] of the same length, where tn = nτ , for

n = 0,1, . . . ,NT ≡ [T/τ], and τ > 0 is the constant time step. In the following, we

shall denote by ψh,n the numerical approximations to the semidiscrete solution values

ψh(tn). Now, recalling the differential system (3), we consider the Taylor expansion

of Ah(ψh) around ψh,n:

Ah(ψh) = Ah(ψh,n)+ Jh(ψh,n)(ψh−ψh,n)+Bh(ψh,ψh,n), (5)

where Jh denotes the Jacobian matrix dAh/dψh. If we consider f̆h(ψh,n)≡Ah(ψh,n)−
Jh(ψh,n)ψh,n as an additional source/sink term, we can rewrite (5) as Ah(ψh) =

f̆h(ψh,n) + Jh(ψh,n)ψh + Bh(ψh,ψh,n). Note that the last term in this expression is

nonlinear. Furthermore, using the partition of unity introduced in (4), we split the

linear terms Jh(ψh,n), f̆h(ψh,n) and fh(t) as follows:

2Jh(ψh,n) =
s

∑
j=1

J
j
h(ψh,n), where J

j
h(ψh,n) = Rh(ρ j(x))Jh(ψh,n),

f̆h(ψh,n) =
s

∑
j=1

f̆
j

h (ψh,n), where f̆
j

h (ψh,n) = Rh(ρ j(x)) f̆h(ψh,n),

fh(t) =
s

∑
j=1

f
j

h (t), where f
j

h (t) = Rh(ρ j(x)) fh(t),

(6)

with Rh(ρ j(x)) being a diagonal matrix whose main diagonal is given by rhρ j(x).
Finally, the right-hand side from (3) can be rewritten in the following form:

Fh(t,ψh)≡ F0
h (t,ψh)+F1

h (t,ψh)+ · · ·+Fs
h (t,ψh), (7)

where F0
h (t,ψh)≡ gh(t,ψh)+Bh(ψh,ψh,n) comprises the nonlinear part of Fh(t,ψh),

whereas F
j

h (t,ψh)≡ J
j
h(ψh,n)ψh + f̆

j
h (ψh,n)+ f

j
h (t), for j = 1,2, . . . ,s, are linear non-

homogeneous terms.

According to the ideas proposed in [3] for linear parabolic problems and sub-

sequently adapted in [4] to the semilinear case, we can integrate (3) by using the

splitting (7), together with the following fractional step method:





ψ1
h,n = ψh,n,

ψ2
h,n = ψ1

h,n + τ ∑2
k=1 αk F

ik
h (tk

n ,ψ
k
h,n)+ τ

2
F0

h (t1
n ,ψ1

h,n),

ψ j
h,n = ψ j−1

h,n + τ ∑
j
k= j−1 αk F

ik
h (tk

n ,ψ
k
h,n), j = 3,4, . . . ,2s−2,

ψ2s−1
h,n = ψ2s−2

h,n + τ ∑2s−1
k=2s−2 αk F

ik
h (tk

n ,ψ
k
h,n)

− τ
2

F0
h (t1

n ,ψ1
h,n)+ τF0

h (ts
n,ψ

s
h,n),

ψh,n+1 = ψ2s−1
h,n , n = 0,1, . . . ,NT −1,

(8)

where ik = k, for k = 1,2, . . . ,s, and ik = 2s− k, for k = s + 1,s + 2, . . . ,2s−1. The

intermediate times are tn,1 = tn, tn,k = tn + τ/2, for k = 2,3, . . . ,2s−2, and tn,2s−1 =
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tn + τ = tn+1, whereas the method coefficients are given by α1 = αs = α2s−1 = 1/2

and αk = 1/4 ∀k ∈ {2,3, . . . ,s−1}∪{s+1,s+2, . . . ,2s−2}. Note that (8) is a lin-

early implicit one-step method with (2s−1) internal stages belonging to the class of

so-called fractional step Runge-Kutta (FSRK) methods (cf. [4]). It considers implicit

contributions of the linear terms {F j
h }s

j=1, while explicitly handling the nonlinear

term F0
h . Recall that this term involves both the non-stiff reaction term gh(t,ψh)

and the stiff remainder Bh(ψh,ψh,n). The former will not affect the stability of the

scheme, provided it satisfies a Lipschitz condition (cf. [4]); by contrast, a mild stabil-

ity restriction will arise due to the latter. A deeper insight on the stability properties

of (8) will be provided in the last section.

Since (8) is an FSRK method, its internal stages consist of linear systems with the

coefficient matrices (Ih−τα jJ
i j

h (ψh,n)), for j = 2,3, . . . ,2s−1. Owing to the domain

decomposition splitting (6), each one of these linear systems involves the unknowns

lying just in one of the subdomains {Ω j}s
j=1. Moreover, since each subdomain Ω j

comprises s j disjoint connected components, such a system can be easily decom-

posed into s j uncoupled subsystems which allow a straightforward parallelization.

As a difference with respect to classical domain decomposition methods, artificial

boundary conditions are not required on each subdomain and, hence, no Schwarz

iterative procedures are involved in the computations.

Following [4], the previous method can be proved to be of classical order 2. In

fact, if we consider the case in which the number of levels s = 2 and apply the method

to a linear parabolic problem, we recover the time integration process involved in the

classical Peaceman-Rachford alternating direction implicit scheme. Therefore, (8)

may be considered as a generalization of the Peaceman-Rachford scheme (cf. [3]).

As mentioned above, the conditional stability of (8) involves a mild stability

restriction which makes it competitive with other existing linearly implicit splitting

methods of order 2. For illustration, we shall compare our proposal with the so-

called Hundsdorfer and Verwer scheme analyzed in [1]. This scheme is based on the

technique of stabilizing corrections and, when applied to problem (3) with splitting

(7), it leads to:





ψ0
h,n = ψh,n + τFh(tn,ψh,n),

ψ j
h,n = ψ j−1

h,n +θτ
(
F

j
h (tn+1,ψ

j
h,n)−F

j
h (tn,ψh,n)

)
, j = 1,2, . . . ,s,

ψ̂0
h,n = ψ0

h,n +στ
(
Fh(tn+1,ψ

s
h,n)−Fh(tn,ψh,n)

)
,

ψ̂ j
h,n = ψ̂ j−1

h,n +θτ
(
F

j
h (tn+1, ψ̂

j
h,n)−F

j
h (tn+1,ψ

s
h,n)
)
, j = 1,2, . . . ,s,

ψh,n+1 = ψ̂s
h,n, n = 0,1, . . . ,NT −1.

(9)

For any given θ , the scheme (9) is conditionally convergent of classical order 2,

whenever σ = 1
2
, and of order 1 otherwise. Although the stability restriction of this

method is similar to that of (8), it requires two more implicit stages in order to achieve

the same accuracy.
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4 Numerical Results

This section shows the numerical behaviour of methods (8) and (9) in the solution

of nonlinear parabolic problems of type (1). In particular, let us consider (1) posed

on the unit square Ω ≡ {x = (x,y) ∈ R2 : 0 < x < 1, 0 < y < 1}. Tensor K(ψ) is a

symmetric positive-definite nonlinear matrix defined as K(ψ) = Q(θ)D(ψ)Q(θ)T ,

where Q(θ) is a 2×2 rotation matrix with angle θ = π/4 and D(ψ) is a 2×2 diag-

onal matrix whose diagonal entries are 1 + ψ2 and 1 + 8ψ2. The nonlinear reaction

term is chosen to be g(ψ) = −(1 + ψ2)e−ψ , whereas the source/sink term f (x, t)
and both initial and Dirichlet boundary conditions are defined in such a way that

ψ(x,y, t) = e11−4tx4(1− x)4y4(1− y)4 is the exact solution of the problem.

The discretization of the spatial domain Ω is based on the construction of a

smooth curvilinear grid Ωh ≡ {(x̃i, j, ỹi, j)}N
i, j=1 with coordinates:

x̃i, j = ξi, j +10ξi, j (1−ξi, j)( 1
2
−ξi, j)ηi, j (1−ηi, j),

ỹi, j = ηi, j +10ηi, j (1−ηi, j)( 1
2
−ηi, j)ξi, j (1−ξi, j),

where ξi, j = (i−1)h, ηi, j = ( j−1)h and h = 1/(N−1). This grid is obtained from

a uniform grid, by using an analytical transformation. Fig. 1 shows an example of

such a grid for N = 17.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 1. Logically rectangular grid for N = 17.

Afterwards, we consider a decomposition of Ω into s = 4 overlapping subdo-

mains {Ω j}s
j=1, each of which involves s j = 4 disjoint connected components, for

j = 1,2,3,4. Related to such a decomposition, we define a smooth partition of

unity consisting of a sequence of functions {ρ j(x)}s
j=1 based on (4). This parti-

tion of unity is displayed on Fig. 2, where the overlapping subdomains are given

by Ω j ≡ supp(ρ j(x)).
For the time integration of this test problem, we consider the linearly implicit

FSRK method (8) as well as the Hundsdorfer and Verwer scheme (9), with θ = 1 and

σ = 1/2. Let us introduce the global error at time t = tn as Eh,τ = rhψ(x, tn)−ψh,n, for

n = 1,2, . . . ,NT . Under certain discrete norm ‖ · ‖h and suitable stability restrictions

between h and τ , it holds that ‖Eh,τ‖h ≤ C(h2 + τ2), being C a positive constant
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Fig. 2. Smooth partition of unity {ρ j(x)}s
j=1 related to {Ω j}s

j=1, for s = 4.

independent of h and τ . In our convergence study, we shall measure these errors

by using the discrete L2-norm in space and the discrete maximum norm in time,

denoted by ‖Eh,τ‖2. Tables 1 and 2 present the asymptotic behaviour of the global

errors when the scheme (8) is used for different values of h and τ . As expected, it is

shown to be conditionally convergent of order 2 in both space (see Table 1) and time

(see Table 2).

Table 1. Global errors obtained in method (8) for τ = 5 ·10−8.

h h0 = 2−4 h0/2 h0/4 h0/8 h0/16 h0/32

‖Eh,τ‖2 4.530E-2 3.305E-3 5.028E-4 1.120E-4 2.639E-5 6.574E-6

Finally, Table 3 compares the stability restrictions arising between h and τ when

both methods are applied to this example. Here, we compute the maximum time

steps τPR

h and τHV

h which make (8) and (9) respectively stable for different mesh sizes

h. In view of the numerical results, we can conclude that both schemes converge
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Table 2. Global errors obtained in method (8) for h = 2−7.

τ τ0 = 10−4 τ0/2 τ0/4 τ0/8 τ0/16 τ0/32

‖Eh,τ‖2 1.424E-5 3.562E-6 8.908E-7 2.227E-7 5.568E-8 1.392E-8

under a non-severe stability limitation which is revealed to be slightly milder for

our proposal. We have performed additional experiments assuming different types

of solutions on both smooth and non-smooth grids and the resulting stability restric-

tions preserve a similar behaviour. Therefore, the generalization of the Peaceman-

Rachford method given by (8) may be considered as a remarkable alternative to other

existing linearly implicit splitting methods of order 2.

Table 3. Maximum time steps τPR

h and τHV

h permitted for different mesh sizes h.

h h0 = 2−4 h0/2 h0/4 h0/8 h0/16 h0/32

τPR

h 2.30E-3 1.90E-3 7.30E-4 3.00E-4 1.25E-4 5.10E-5

τHV

h 2.20E-4 7.05E-5 2.12E-5 6.43E-6 1.90E-6 5.80E-7
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