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1 Introduction

Newton-Krylov-Schwarz algorithms have been used in many areas and are often

quite scalable and robust. In this paper we explore the application of Schwarz type

domain decomposition preconditioners to some fully coupled systems for fluid-

structure interaction. In particular, we are interested in developing a scalable parallel

framework for the simulation of blood flow in human arteries [11]. In [2, 3], coupled

fluid-structure problems are solved in 3D for patient-specific artery models, with

emphasis on accurately representing vessel geometry, on constitutive model for the

artery walls, and other physical concerns. In this paper we focus on a class of parallel

domain decomposition algorithms for solving the coupled systems and report on the

robustness and parallel scalability of the algorithms.

Very often in the simulation of fluid-structure interaction, fluid and structure are

iteratively coupled, as in [4, 5, 7]. That is, fluid and structure subproblems are solved

alternately (or in parallel), passing boundary conditions between them, until the solu-

tions are compatible at the fluid-structure interface, and then the simulation proceeds

to the next time step. However, this approach often requires small timesteps, can

become unstable, and can reduce the order of accuracy of the solution [8]. In con-

trast, we use fully monolithic coupling, where the fluid and the structure are solved

together as one system.

2 Governing Equations

We use a linear elastic model for the structure. The primary variable in the structure

equations is the displacement vector xs. Define σs as the stress-strain relation or

Cauchy stress tensor

σs = λs(∇ ·xs)I +2µs(∇xs +∇xT
s )
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where λs and µs are the Lamé constants. The equilibrium equation for linear elasticity

is

ρs
∂ 2xs

∂ t2
= ∇ ·σs + fs. (1)

We fix the structure displacement xs = 0 on the dry, non-interaction boundary ΓS; the

boundary conditions on the fluid-structure interaction boundary Γw will be presented

when we discuss the fluid-structure coupling.

The mesh points of our fluid domain move, and the displacements of the mesh

nodes from their original reference configuration define a separate field that we need

to represent. For the grid displacements x f , we simply use the Laplace equation

∆x f = 0 (2)

in the interior of the domain, following [9]. In our numerical simulations this simple

relation gives a smooth grid as the boundaries of the domain move, rarely causing

problems with ill-conditioned elements. The boundary conditions for this field are

either fixed zero Dirichlet conditions (at the inlet and outlet of the fluid domain) or

are prescribed to follow the movement of the structure.

We model blood as a viscous incompressible Newtonian fluid, using the Navier-

Stokes equations written in the ALE frame

∂u f

∂ t

∣∣∣∣
Y

+[(u f −ωg) ·∇]u f +
1

ρ f

∇p = ν f ∆u f , (3)

∇ ·u f = 0. (4)

Here u f is the fluid velocity vector and p is the pressure. The given data include the

fluid density ρ f , and ν f = µ f /ρ f , the kinematic viscosity. External body forces are

ignored. Also, ωg = ∂x f /∂ t is the velocity of the moving mesh in the ALE frame

and the Y indicates that the time derivative is to be taken with respect to the ALE

coordinates, not the Eulerian coordinates [9].

Boundary conditions for the fluid equations consist of a no-slip condition u f = 0

at rigid walls Γf , a Dirichlet condition where u f takes a given profile at the inlet Γi,

and a zero traction condition

σ f ·n = µ f (∇u f ·n)− pn = 0 (5)

on the outlet Γo, where σ f is the Cauchy stress tensor for the fluid and n is the unit

outward normal.

At the fluid-structure interface we require that the structure velocity match the

fluid velocity u f = ∂xs/∂ t and we also enforce that the moving mesh must follow

the solid movement x f = xs, so that the solid can maintain a Lagrangian description.

The coupling of traction forces at the boundary can be written σs ·n = σ f ·n where

n is the unit normal vector at the fluid-solid interface.
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3 Spatial Discretization

Because of space constraints, we omit the full derivation of the weak form of the gov-

erning equations. We note two interesting points here. First, because of our moving

grid, the variational spaces in which we seek a solution to the fluid subproblem are

time-dependent. Second, the variational spaces associated with the fluid subproblem

and the mesh subproblem depend implicitly on the current solution to the structure

subproblem, as this solution provides essential boundary conditions for the fluid and

mesh subproblems.

The spatial discretization is done with quadrilateral finite elements, with a con-

forming discretization at the fluid-structure interface, so that no special interpolation

scheme is necessary to move information between fluid and structure.

We write the structure displacement vector xs as xs ≈ ∑ j ϕ j(x)x j(t) and denote

the vector of coefficients x j as xs. Using this approximation, we arrive at the semi-

discrete system

Ms
∂ 2xs

∂ t2
+Cs

∂xs

∂ t
+Ksxs = F (6)

where Cs = αMs + βKs is an added Rayleigh damping matrix where α and β are

small parameters; typically α ≈ 0.1 and β ≈ 0.01 [6].

We use biquadratic quadrilateral finite elements in our ALE discretization of the

moving mesh. We approximate x f ≈ ∑ j ξ j(x)x j(t). This is a standard finite-element

discretization of the Laplace equation resulting in Kmx f = 0 with boundary condi-

tions that depend on the structure subproblem.

The fluid is discretized with the LBB-stable Q2−Q1 finite elements. Using finite-

dimensional approximations u f ≈ ∑ j ϕ j(x, t)u j(t) and p ≈ ∑ j ψ j(x, t)p j(t) we can

write the semi-discrete Navier-Stokes equations in the ALE frame as

M f
∂u

∂ t
+B(u)u+K f u−QT p = M f f , (7)

Qu = 0 (8)

where M f is a mass matrix, B(u) represents the nonlinear convective operator, K f is

the discrete Laplacian, and Q is the discrete divergence operator.

The mesh displacement continuity and velocity continuity conditions are en-

forced directly at each timestep; we replace rows of the matrix corresponding to

these degrees of freedom with rows representing the equations xs = x f , and similarly

for the velocity. We also need to discretize the traction force that the fluid exerts on

the solid boundary, namely σ f ·n = µ f (∇u f ·n)− pn. The result has block matrix

form

σ f ·n =

(
Auu Auv Aup

Avu Avv Avp

)


u f

v f

p


= (Au Ap)

(
u

p

)
. (9)

This will be inserted as a force in the discrete form of the structure equations to

enforce the traction matching condition at the fluid-structure interface.
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4 Temporal Discretization

We use the trapezoid rule yn+1 = yn +(∆ t/2)
(

f n+1 + f n
)

which is a second-order

accurate implicit scheme for all our time discretization.

For the structure time-stepping, we follow [6] in implementing the trapezoid rule

by reducing the order of (6) from second order to first order. Our new vector of

unknowns includes both solid displacement and velocity, y = (xs,∂xs/∂ t)T . Then

∂y

∂ t
= f (y, t) =




∂xs

∂ t

M−1(F(t)−Ksxs−Cs
∂xs

∂ t
)


 .

The trapezoid rule for this differential algebraic equation can be written

Myn+1 = Myn +
∆ t

2

[
Kyn+1 +Kyn +Fn+1 +Fn

]

where

M =

(
I

Ms

)
, K =

(
I

−Ks −Cs

)
.

The moving mesh, like the continuity equation for the fluid, is enforced indepen-

dent of time. So we simply require

Kmxn+1
f = 0

at each time step.

Rescaling pressure by the timestep ∆ t, we apply a slightly modified version of

the trapezoid rule to (7) to get

Mun+1 = Mun +
1

2

[
(S +∆ tRn+1)un+1 +(S +∆ tRn)un

]

where

M =

(
M f 0

0 0

)
, Rn =

(
−B(un)−K f 0

0 0

)
, S =

(
0 −QT

Q 0

)
.

We use the same time-stepping scheme for fluid and structure, so we can simply

put the discretized fluid and structure problems together in one system with coupling

enforced implicitly. In summary, we have

(M +W )yn+1−Myn− ∆ t

2
(Kyn+1 +Kyn)− ∆ t

2
(Fn+1 +Fn) = 0 (10)

where
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yn =




un

∆ t pn

xn
f

xn
s

ẋs
n




, M =




M f

I

Ms




,

W =




Km

Au Ap




, K =




−B−K f −(1/∆ t)QT

(1/∆ t)Q

I

−Ks −Cs




.

Though written in matrix form, many of the operators above are nonlinear. In partic-

ular the B term depends on u f , and the K f ,M f and Q terms depend on the moving

mesh x f . This implies that we have a Jacobian of the form

J =




J f −QT Zm

Q Zc

Km

Au Ap I −(∆ t/2)I
(∆ t/2)Ks Ms +(∆ t/2)Cs




(11)

where J f is the Jacobian of the nonlinear term in the momentum equation and Zm

and Zc are the nonlinear contributions of the moving mesh to the momentum and

continuity equations. The form of Zm and Zc are unknown, and our implementation

of the Jacobian simply ignores them, which is a reasonable approximation as long as

the mesh movement is slow, i.e., the timestep is sufficiently small.

5 Solving the Nonlinear System

At each timestep, we solve the nonlinear system (10) with an inexact Newton method

with line search. At each Newton step we solve a preconditioned linear system of the

form J(y)M−1(Ms) = z for the Newton correction s, where M−1 is a one-level ad-

ditive Schwarz preconditioner [10, 12, 13]. In this domain decomposition precondi-

tioner, the formation of subdomains does not consider the fluid-structure boundary,

so that a subdomain may contain fluid elements, structure elements, or both. Sub-

domain solves are done by LU factorization with homogeneous Dirichlet boundary

conditions on the boundaries for all solution variables, including the fluid pressure.

In practice, we order the unknowns for the Jacobian system not by field ordering

as in (11), but by element ordering. The choice of ordering can have significant effect

on the convergence properties of the solver. By this choice, the nonzero-block struc-

ture is banded. That is, within each element the unknowns are ordered as in (11), but

globally the matrix looks like the nine-point stencil for a Poisson equation.
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6 Numerical Results

Our solver is implemented using PETSc [1]. All computations are performed on an

IBM BlueGene/L supercomputer at the National Center for Atmospheric Research

with 1024 compute nodes.

We begin all our simulations with zero initial conditions for structure displace-

ment and fluid velocity, therefore compatibility between fluid and structure is easily

satisfied in the initial conditions. In all the numerical results in this paper, we use

a timestep ∆ t = 0.01, a Young’s modulus E = 1.0 · 105, we stop the linear solver

when the preconditioned residual has decreased by a factor of 10−4 and we stop the

Newton iteration when the nonlinear residual has decreased by a factor of 10−6. We

set GMRES to restart every 40 iterations, and have the structural damping parame-

ters α = 0.1,β = 0.01. Simulations begin with zero initial conditions and proceed

10 timesteps, reporting average walltime and nonlinear iteration count per timestep,

and average GMRES iterations per Newton step.

Our fluid-structure interaction simulations can deal with large deformations of

the computational grid without the quality of the mesh degrading and without affect-

ing convergence, and we maintain sufficient spatial resolution to resolve vortices and

other interesting flow features.

The scalability of our algorithm is presented in Table 1. Our method scales well

with respect to number of processors and scales fairly well with respect to prob-

lem size. It is also worth noting the large grid sizes and processor counts that we

have used with success. The growth in GMRES iterations for large processor counts

suggests that the less than perfect speedup could probably be improved by use of a

multilevel preconditioner.

unknowns np GMRES Newton time

64 9.3 5.0 123.44

1.0 ·106 128 13.4 5.0 57.11

256 18.2 5.0 36.41

512 24.0 5.0 22.08

128 17.5 4.8 125.31

256 21.5 4.8 66.11

2.1 ·106 512 29.7 4.8 39.97

1024 35.9 4.8 22.90

2048 40.0 4.8 17.25

128 15.1 4.7 198.34

256 20.1 4.7 100.23

2.6 ·106 512 29.3 4.7 46.50

1024 40.0 4.7 28.11

2048 48.6 4.7 21.10

Table 1. Speedup and scalability. In this table ASM overlap δ = 2, Reynolds number = 132.02,

νs = 0.30
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Our simulation is also robust with respect to physical parameters. In Table 2a,

we show numerical results for various Reynolds numbers. Many blood flow simula-

tions, for example [2], use Reynolds numbers in the range 30–100, but we can exceed

that without much difficulty. As the Poisson ratio νs approaches 1/2 the structure

becomes incompressible and the structure problem becomes more numerically chal-

lenging; our solver is fairly robust also in this respect (results not shown). In some

FSI methods, the case where fluid and structure densities are nearly equal is particu-

larly difficult. Our monolithic coupling avoids this difficulty, see Table 2b.

ρs ρ f GMRES Newton

10−6 10−6 57.8 2.5

10−6 10−3 41.1 3.8

10−6 1.0 7.3 5.6

10−6 10.0 5.8 7.9

1.0 10−6 59.0 2.3

1.0 10−3 40.5 3.7

1.0 1.0 7.5 5.4

1.0 10.0 5.8 7.9

106 10−6 60.4 2.4

106 10−3 64.7 2.3

106 1.0 24.6 4.0

106 10.0 11.0 4.2

unknowns Re GMRES Newton

33.00 12.0 4.8

66.01 12.1 4.8

2.1 ·106 132.02 12.2 4.8

264.03 12.5 4.8

1056.12 12.7 10.0

33.00 12.9 4.7

66.01 13.1 4.7

2.6 ·106 132.02 13.5 4.7

264.03 13.5 4.7

1056.12 13.7 9.9

Table 2. (a) Sensitivity of algorithm to various fluid densities (ρ f ) and solid densities (ρs);

these problems have 6.5 ·105 unknowns and tests are done with 128 processors. (b) Sensitivity

to Reynolds number with 256 processors. In both (a) and (b) ASM overlap δ = 8 and νs = 0.30

7 Conclusion

Accurate modeling of blood flow in compliant arteries is a computational challenge.

In order to meet this challenge, we need not only to model the physics accurately

but also to develop scalable algorithms for parallel computing. In this paper we de-

velop a Newton-Krylov-Schwarz solver that scales well in parallel and is effective

for solving the implicitly coupled fluid-structure interaction problem. Our method is

quite robust with respect to different vessel geometries, Reynolds numbers, Poisson

ratios, densities, spatial mesh sizes and time step sizes.
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