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Summary. Simulations of saturated-unsaturated groundwater flow in heterogeneous soil

can be carried out by considering non-overlapping domain decomposition problems for the

Richards equation in subdomains with homogeneous soil. By the application of different

Kirchhoff transformations in the different subdomains local convex minimization problems

can be obtained which are coupled via superposition operators on the interface between the

subdomains. The purpose of this article is to provide a rigorous mathematical foundation for

this reformulation in a weak sense. In particular, this involves an analysis of the Kirchhoff

transformation as a superposition operator on Sobolev and trace spaces.

1 Introduction

The Richards equation, which describes saturated-unsaturated fluid flow in a homo-

geneous porous medium, reads

nθ(p)t −div(Khkr(θ(p))(∇p− z)) = 0 . (1)

The unknown water or capillary pressure p, given as the height of a correspond-

ing water column, is a function on Ω×(0,T ) for a time T > 0 and a domain Ω ⊂Rd

(d = 1,2,3) inhibited by the porous medium. The function n : Ω→ (0,1) is the poros-

ity of the soil, Kh : Ω → R+ is the hydraulic conductivity and z is the coordinate in

the direction of gravity.

The saturation θ : R→ [θm,θM] with θm,θM ∈ [0,1] is an increasing function of p

with θ(p) = θM (the case of full saturation and ellipticity of (1)) if p is large enough.

The relative permeability kr : [θm,θM]→ [0,1] is an increasing function of θ with

kr(θm) = 0 (degeneracy in (1)) and kr(θM) = 1. In this way the Richards equation

contains the generalized law of Darcy

v =−Khkr(θ(p))(∇p− z) ,

for the water flux v. Typical shapes of the nonlinearities θ and kr are depicted

in Figs. (a) and (b). However, these functions depend on the soil type so that we
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(a) p 7→ θ(p)
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(b) θ 7→ kr(θ)

have different nonlinearities θi, kri on different non-overlapping subdomains Ωi,

i = 1, . . . ,N ∈ N, constituting a decomposition of Ω .

In the following, we assume n = Kh = 1 and N = 2 for simplicity. See Figure 1

for a decomposition of Ω into Ω1 and Ω2 where n denotes the outer normal of Ω1.

Moreover, we assume that (1) is discretized implicitly in time but with an explicit

n

Γ
Ω1

Ω2

Fig. 1. 2D-domain Ω decomposed into two subdomains.

treatment of the gravitational (convective) term so that with a suitable function f on

Ω we arrive at spatial problems of the form

θi(pi)−div(kri(θi(pi))∇pi) = f on Ωi , i = 1,2 . (2)

Appropriate interface conditions on Γ := Ω 1∩Ω 2, which are motivated hydrologi-

cally, are the continuity of the pressure and the normal water flux v ·n across Γ . After

our implicit–explicit time discretization, this leads to

p1 = p2 on Γ , (3)

kr1(θ1(p1))∇p1 ·n = kr2(θ2(p2))∇p2 ·n on Γ . (4)

In case of θ1 = θ2 and kr1 = kr2, these interface conditions can be mathematically

derived in a weak sense (and in a very general setting) as a multi-domain formulation

for the corresponding global problem, see [2, pp. 131–139].
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A powerful tool for the treatment of the Richards equation is Kirchhoff’s trans-

formation. It leads to spatial convex minimization problems after time discretization

(see [2] for details). Here, we need to apply two different Kirchhoff transformations

in the two subdomains. More concretely, we define

ui(x) := κi(pi(x)) =
∫ pi(x)

0
kri(θi(q))dq a.e. on Ωi , i = 1,2 . (5)

Consequently, we obtain

kri(θi(pi))∇pi = ∇ui , i = 1,2 , (6)

by the chain rule so that with the saturation

Mi(ui) = θi(κ
−1
i (ui)) , i = 1,2 , (7)

with respect to the new variables the equations (2) are transformed into

Mi(ui)−∆ui = f on Ωi , i = 1,2 . (8)

Moreover, the Kirchhoff–transformed interface conditions read

κ−1
1 (u1) = κ−1

2 (u2) on Γ , (9)

∇u1 ·n = ∇u2 ·n on Γ . (10)

Accordingly, boundary conditions on ∂Ω for (1) and (2) are transformed.

Applying Kirchhoff’s transformation is straightforward in the strong formula-

tions above. However, regarding the weak forms, the proof for the equivalence of the

physical and the transformed versions is more sophisticated. For example, we need

the chain rule (6) in a weak sense in H1(Ωi). Furthermore, κ−1
i (ui), i = 1,2, in (9)

has to be understood as an element of some trace space. In order to clarify these is-

sues, which already occur in case of a single domain, one has to study the Kirchhoff

transformation as a superposition operator in Sobolev and trace spaces. This is the

purpose of this paper.

Concretely, we present weak forms of the domain decomposition problems for

the time-discretized Richards equation and its transformed version in Section 2. Then

we carry out some analysis for the Kirchhoff transformation as a superposition oper-

ator in Section 3. Finally, the obtained results are exploited to prove the equivalence

of the weak formulations in Section 4.

2 Weak Forms of the Domain Decomposition Problems

In this section we give variational formulations of the domain decomposition prob-

lems (2)–(4) and (8)–(10) with homogeneous Dirichlet boundary conditions (com-

pare [3]). We start with some notation and assumptions.
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We require kri ∈ L∞(R) with kri≥α for some α > 0 and i = 1,2. (For the general

case α = 0 as in Figs. 1(a) and 1(b), the results are weaker; see [2, Sec. 1.5.4]). Let θi,

i = 1,2, be bounded Borel–measurable functions on R and f ∈ L2(Ω). Furthermore,

in a decomposition as above, let Ω and Ωi, i = 1,2, be bounded Lipschitz domains

in Rd and Γ a Lipschitz (d−1)-dimensional manifold. Now we introduce the spaces

Vi := {vi ∈ H1(Ωi)|vi|∂Ω∩∂Ωi
= 0}, V 0

i := H1
0 (Ωi), Λ := {v|Γ : v ∈ H1

0 (Ω)},

and for wi,vi ∈Vi, the forms

ai(wi,vi) := (∇wi,∇vi)Ωi
, bi(wi,vi) := (kri(θi(wi))∇wi,∇vi)Ωi

,

where (·, ·)Ωi
stands for the L2–scalar product on Ωi. The norm in H1(Ω) will be

denoted by ‖·‖1. Recall that the trace space Λ is either H
1/2
00 (Γ ) in case of Γ ∩ ∂Ω 6=

/0 (as in Figure 1) or H1/2(Γ ) otherwise [8, p. 7]. The restriction wi|Γ of a function

wi ∈Vi on the interface Γ has to be understood as the application of the corresponding

trace operator on wi.

Finally, let Ri, i = 1,2, be any continuous extension operator from Λ to Vi. Then

the variational formulation of problem (2)–(4) with homogeneous Dirichlet boundary

conditions reads as follows:

Find pi ∈Vi, i = 1,2, such that

(θi(pi),vi)Ωi
+bi(pi,vi) = ( f ,vi)Ωi

∀vi ∈V 0
i , i = 1,2 , (11)

p1|Γ = p2|Γ in Λ , (12)

(θ1(p1),R1µ)Ω1
+b1(p1,R1µ)− ( f ,R1µ)Ω1

=

− (θ2(p2),R2µ)Ω2
−b2(p2,R2µ)+( f ,R2µ)Ω2

∀µ ∈Λ . (13)

Analogously, the weak formulation of the transformed problem (8)–(10) with

homogeneous Dirichlet boundary conditions reads:

Find ui ∈Vi, i = 1,2, such that

(Mi(ui),vi)Ωi
+ai(ui,vi) = ( f ,vi)Ωi

∀vi ∈V 0
i , i = 1,2 , (14)

κ−1
1 (u1|Γ ) = κ−1

2 (u2|Γ ) in Λ , (15)

(M1(u1),R1µ)Ω1
+a1(u1,R1µ)− ( f ,R1µ)Ω1

=

− (M2(u2),R2µ)Ω2
−a2(u2,R2µ)+( f ,R2µ)Ω2

∀µ ∈Λ . (16)

The rest of this paper is devoted to prove the equivalence of the variational for-

mulations (11)–(13) and (14)–(16).

3 Kirchhoff Transformation as a Superposition Operator

The difficulties encountered to prove the equivalence of the weak forms in physical

and in transformed variables already occur for a single domain. Therefore, we omit

the indices i ∈ {1,2} in this section in which we want to address these difficulties.

We start with an important definition [1].
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Definition 1. Let p be a real-valued function defined on a subset S⊂ Rd , possibly

almost everywhere w.r.t. an appropriate measure. Furthermore, let κ : R→ R be a

real function. The superposition operator (or Nemytskij operator) κS : p 7→ κ(p) is

defined by pointwise application

(κS(p))(x) := κ(p(x)) ,

of κ to p (for x almost everywhere) on S. Let X be a normed space consisting of

a subset of all measurable functions on S. If the superposition operator satisfies

κS(p) ∈ X for all p ∈ X, we say that it acts on the space X. In this case we write κX :

X → X for the restriction of κS on the space X and call κX superposition operator

on X (induced by κ).

Here, S will be either Ω or a submanifold Σ of ∂Ω . If not otherwise stated,

we assume the conditions listed at the beginning of Section 2 and the Kirchhoff

transformation κ given as in (5). We begin by stating the weak chain rule which goes

back to J. Serrin (see [5]). Recall that κ ′ = kr ◦ θ ∈ L∞(R) holds for any Lipschitz

continuous function κ : R→ R due to the fundamental theorem of calculus.

Theorem 1. If κ : R→ R is Lipschitz continuous then the weak chain rule

κ ′(p)∇p = ∇(κ(p)) a.e. on Ω ,

holds for any p ∈W
1,1
loc (Ω) provided κ ′(p(x))∇p(x) is interpreted as 0 whenever

∇p(x) = 0.

We remark that the last condition is an essential part of the theorem since

κ ′(p(x)) does not have to be defined for any x ∈ Ω . Indeed, for kr ∈ L∞(R) the

composition kr ◦θ(p) alone does not make sense for p ∈W
1,1
loc (Ω) since it depends

on the choice of the representative in the equivalence class kr.

The next lemma is not hard to prove (see [2, Sec. 1.5.4]), however, we must apply

the weak chain rule twice in order to obtain (iii).

Lemma 1. The Kirchhoff transformation κ has the following properties.

(i) κ : R→ R is Lipschitz continuous and has a Lipschitz continuous inverse.

(ii) κ : R→R and κ−1 : R→R induce Lipschitz continuous superposition operators

acting on L2(Ω) and on L2(Σ) for any submanifold Σ ⊂ ∂Ω .

(iii) κ : R→ R induces an invertible superposition operator on H1(Ω) with

α−1‖p‖1 ≤ ‖κ(p)‖1 ≤ ‖kr ◦θ‖∞‖p‖1 ∀p ∈ H1(Ω) .

By imposing further conditions on the function kr ◦θ , e.g. its boundedness and

uniform continuity, the continuity of the superposition operator κH1(Ω) can be proved

by elementary means (compare [2, Prop. 1.5.14]) — if one assumes kr ◦ θ to be

Lipschitz continuous, one even obtains local Lipschitz continuity of κH1(Ω) in one

space dimension.

The following remarkable characterization of superposition operators acting on

H1(Ω), however, is a quite profound result, see Marcus and Mizel [6, 7].
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Theorem 2. Let Ω ⊂Rd be a bounded open set and κ : R→R a Borel function. The

superposition operator κΩ acts on H1(Ω) if and only if it is continuous on H1(Ω)
or, equivalently, if and only if κ is Lipschitz continuous for d > 1 or locally Lipschitz

in the case d = 1, respectively.

The following proposition contains an important commutativity result. Strangely

enough, in order to derive this algebraic property, it seems necessary to assume the

continuity of κH1(Ω). In the proof we also apply the well-known trace theorem for

trace operators trΣ : H1(Ω)→ H1/2(Σ) (compare e.g. [4, pp. 1.61, 1.65]).

Proposition 1. For a submanifold Σ ⊂ ∂Ω and κ as in Theorem 2, we have the

commutativity

κΣ (trΣ v) = trΣ (κΩ v) ∀v ∈ H1(Ω) . (17)

Proof. We prove that for any v ∈ H1(Ω)

‖trΣ (κΩ v)−κΣ (trΣ v)‖L2(Ω) (18)

is arbitrarily small by considering a sequence (vn)n∈N ⊂ C∞(Ω) converging to v in

H1(Ω). In fact, since Theorem 2 provides the continuity of κ and the trace of a

continuous function on Σ coincides with its restriction to Σ , the norm in (18) can be

estimated by

‖trΣ (κΩ v)− (κΩ vn)|Σ‖L2(Ω) +‖κΣ (vn|Σ )−κΣ (trΣ v)‖L2(Ω) . (19)

The first term in (19) is at most

‖trΣ‖‖κΩ v−κΩ vn‖1 ,

due to the trace theorem, and this estimate goes to 0 for n→ ∞ by the continuity of

κH1(Ω). For d > 1 where κ : R→ R is Lipschitz continuous, the second term in (19)

can be estimated by

L(κL2(Σ))‖vn|Σ − trΣ v‖L2(Σ) ≤ L(κL2(Σ))‖trΣ‖‖vn− v‖1 ,

with Lemma 1 (ii) (L(κL2(Σ)) denotes the Lipschitz constant of κL2(Σ)) and the trace

theorem and, therefore, tends to 0 for n→ ∞, too. In one space dimension, (17) is

clear since both κ (Theorem 2) and v (Sobolev’s embedding theorem) are continu-

ous. ⊓⊔

Note that Proposition 1 does not guarantee κΣ (trΣ v) ∈ H
1/2
00 (Σ) for trΣ v ∈

H
1/2
00 (Σ). However, we even have

Proposition 2. For a submanifold Σ ⊂ ∂Ω the function κ as in Theorem 2 induces a

continuous superposition operator on H1/2(Σ) and, if κ(0) = (0), on H
1/2
00 (Σ), too.
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Proof. With the continuous extension operator RΣ : H1/2(Σ)→H1(Ω) given by the

trace theorem and using Proposition 1, we can write

κΣ = κΣ ◦ trΣ ◦RΣ = trΣ ◦κH1(Ω) ◦RΣ ,

and the operator on the right hand side is a composition of continuous operators

which obviously acts on H1/2(Σ).

Regarding the second case we recall (see [4, p. 1.60]) that H
1/2
00 (Σ) is the space of

all functions µ ∈ H1/2(Σ) allowing trivial extensions µ̃ ∈ H1/2(∂Ω) with the norm

‖µ‖
H

1/2
00 (Σ)

= ‖µ̃‖H1/2(∂Ω) . (20)

Now, let η ∈ H
1/2
00 (Σ) and η̃ be a trivial extension of η in H1/2(∂Ω). Then,

since κ(0) = 0 and κ∂Ω acts on the space H1/2(∂Ω), we can conclude κ∂Ω (η̃) ∈
H1/2(∂Ω) and κ∂Ω (η̃)|Σ is a trivial extension of κΣ (η) ∈ H1/2(Σ), i.e. by defini-

tion κΣ (η) ∈ H
1/2
00 (Σ). Moreover, if µ ∈ H

1/2
00 (Σ) is treated as η , then κ∂Ω (η̃)−

κ∂Ω (µ̃) ∈ H1/2(∂Ω) is a trivial extension of κΣ (η)−κΣ (µ) ∈ H
1/2
00 (Σ). Now, (20)

and the continuity of κ∂Ω provide that, for any ε > 0, we have

‖κΣ (η)−κΣ (µ)‖
H

1/2
00 (Σ)

= ‖κ∂Ω (η̃)−κ∂Ω (µ̃)‖H1/2(∂Ω) ≤ ε ,

if ‖η̃− µ̃‖H1/2(∂Ω) = ‖η−µ‖
H

1/2
00 (Σ)

≤ δ holds with a suitable δ > 0. ⊓⊔

For completeness we remark that Proposition 2 also holds for the trace space

H
1/2
0 (Σ), see [2, Prop. 1.5.17].

4 Equivalence of the Weak Formulations

We are now in a position to prove our main result.

Theorem 3. With the assumptions on θi and kri, i = 1,2, the domain decomposition

problem (11)–(13) is equivalent to its transformed version (14)–(16).

Proof. The following statements are all valid for i = 1,2. First, Lemma 1 (iii) pro-

vides

pi ∈ H1(Ωi) ⇐⇒ ui ∈ H1(Ωi) .

Therefore, using (5), by Proposition 1 we can conclude

ui|∂Ω∩∂Ωi
= κi(pi)|∂Ω∩∂Ωi

= κi(pi|∂Ω∩∂Ωi
) = κi(0) = 0 ,

i.e. ui ∈Vi if pi ∈Vi. In light of Lemma 1 (i), the converse is true, too.

Now, since θi are bounded Borel–measurable functions on R we have

θi(pi(x)) = Mi(ui(x)) a.e. on Ωi , (21)
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due to (7) for all pi ∈ Vi with ui = κi(pi), and the functions given in (21) are

Lebesgue–measurable L∞–functions on Ωi. Therefore, the L2–scalar products, which

correspond to each other in (11) and (14) as well as in (13) and (16), respectively,

are equivalently reformulated.

Furthermore, the equivalent reformulation of the terms bi(·, ·) in (11) and (13)

into the terms ai(·, ·) in (14) and (16), respectively, is provided by the identity

kri(θi(pi))∇pi = κ ′i (pi)∇pi = ∇ui a.e. on Ωi ,

understood as functions in (L2(Ωi))
d . This is a consequence of Theorem 1.

Finally, the equivalence (12)⇔ (15) requires the commutativity

κ−1
i (ui)|Γ = κ−1

i (ui|Γ ) in Λ ,

which is obtained by Proposition 1 and 2. ⊓⊔

We close this investigation by noting that, in addition to Dirichlet and Neumann

boundary conditions, which have been considered above, boundary conditions of

“Signorini-type” can also be suitably Kirchhoff–transformed in a weak sense. How-

ever, as in the degenerate case α = 0, one can no longer establish the full equivalence

result, compare [2, Thm. 1.5.18].
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