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1 Introduction

The effective properties of composite materials/media are in strong demand in engi-

neering, geoscience, and environmental studies to name just a few examples. In [2],

we presented an efficient algorithm for computing an approximation of the effective

thermal conductivity tensor for high contrast fibrous geometries. The essential idea

of the approach is to take into consideration the network-like structure of a given

fibrous geometry and to perform all calculations on the induced unstructured grid.

More precisely, the intersections of fibers are considered as nodes and the connecting

fibers between nodes are considered as edges of an undirected graph. The weight of

each edge depends on the diameter and the conductivity of the respective fiber and

the distance of the connected nodes. A comparison between the results produced by

our algorithm and classical methods, which resolve the fibrous geometry using vol-

umetric elements, yields evidence of its efficiency and reliability for a large class of

problems from engineering and science.

In the article at hand the primary focus is on increasing the computational ef-

ficiency of the essential preprocessing step, i.e., of setting up the graph. In [2] the

computation of the fiber intersections is carried out straightforwardly, i.e., each fiber

is compared against any other fiber for intersection. This preprocessing stage, if car-

ried out like this, has a complexity which is quadratic in the number of fibers and can

therefore, for samples with very many fibers, become prohibitively expensive.

The idea to reduce the complexity of the straightforward strategy discussed above

is to partition the domain into a grid of coarse cells. Then by going along each fiber,

we determine the coarse grid cells through which this fiber passes. Once this has

been completed we go through each coarse cell and check for intersections only

among those fibers passing through one and the same cell. This is done in such a

way that two fibers are compared only once, no matter if they mutually lie in several

coarse cells. The resulting graph is - except for the ordering of the nodes - identical



4 Achi Brandt, Oleg Iliev, and Joerg Willems

to the one computed by the standard approach. The computational cost, however, is

significantly reduced.

The remainder of the article at hand is organized as follows: In section 2 we

introduce some notations and definitions needed for presenting our argument. After

that we give a short description of the problem which we are ultimately interested in

solving. In section 4 the algorithm that we use to construct the graphs corresponding

to fibrous geometries is discussed. In a subsection we also provide a short analysis

of the computational cost of this algorithm. The final section of this paper is devoted

to numerical results and conclusions.

2 Preliminaries

For the arguments to follow we would like to introduce some notations and defini-

tions. In order to make the presentation somewhat simpler we restrict our exposition

to three spatial dimensions, which is anyway the most interesting case from a prac-

tical point of view. In [2] random fibrous geometries and the computation of their

effective thermal conductivities are the main targets of consideration. Let us now

briefly discuss what exactly we mean by a fiber and a random fibrous geometry.

By a fiber ϕ , we mean a cylindrical object of finite or infinite length. In particular,

a fiber is supposed to have a straight line at its center. To generate a fibrous geometry

these objects are randomly “thrown into” our domain Ω and cut-off at the boundary

∂Ω . For simplicity we assume Ω to be brick shaped. The collection of all fibers

in Ω is denoted by Φ . Let the set of all intersections of the straight lines at the

centers of fibers with ∂Ω be denoted by ∂ω . The actual numerical generation of our

fibrous geometries is done by the GeoDict2008 software (For more information see

http://www.geodict.com.) With this random construction different fibers may and in

general will intersect.

Now, let ω be the set of points, where two or more fibers cross. For a simpler

presentation and to avoid unnecessary technicalities, we assume, that whenever two

fibers (i.e., the cylindrical objects) have a nonempty intersection the same holds true

for their center lines. For a randomly generated fibrous geometry this assumption

will in general not be satisfied. In practice, however, this doesn’t pose any serious

difficulties. In order to determine whether two fibers cross, we calculate the distance

between their center lines. If this distance is smaller than the sum of the fiber radii,

we say that the fibers cross and for each of the involved center lines we store the point

at which they are closest, i.e., the distance of these points is equal to the distance of

the center lines of the involved fibers. The crossing node is then set to be in the

middle of these two points. We also define ω := ω ∪∂ω to be the set of all internal

and boundary intersections.

Let h be the characteristic distance between adjacent (i.e., adjacent on a fiber)

nodes in ω and let d be the characteristic diameter of all fibers in Ω . We require

d≪ h in order to have a meaningful notion of a graph induced by the fibers (which

correspond to the edges of the graph) and their intersections (which correspond to

the nodes of the graph).



DD Graph Calculation 5

3 Statement of the Problem

It is a well-known result from homogenization theory (cf. e.g. [3] and the references

therein) that the effective conductivity tensor K̃ for a periodic or statistically homo-

geneous medium can be calculated by

K̃ei = 〈K∇ui〉Ω , i = 1,2,3,

where ei is the i-th unit vector, K denotes the fine scale conductivity, 〈·〉Ω is the

volumetric average over Ω , and ui solves

∇ · (K∇ui) = 0 in Ω

ui(x) = xi on ∂Ω ,
(1)

with xi being the i-th component of x.

In [1] it was shown that for a composite medium having a (very) high contrast in

conductivities, the effective conductivity tensor of the entire medium can be approx-

imated by solving three (one for each spatial dimension) constant coefficient elliptic

problems. These constant coefficient problems are posed only on the highly con-

ductive parts of Ω . Several numerical examples in [1] show that this approach yields

very good results for a class of problems interesting from a scientific and engineering

point of view.

Departing from the framework in [1] an algorithm was developed in [2] specifi-

cally designed for approximating the effective conductivity tensors for high contrast

fibrous geometries. The essential idea is to perform all calculations on the graph in-

duced by the underlying fibrous structure. The discrete problems corresponding to

(1) read as follows:

D(KGyi) = 0 in ω

yi = xi on ∂ω,
(2)

where D and G are discrete versions of the divergence and gradient operator, respec-

tively, having values on the nodes ( ) and faces () between adjacent nodes, respec-

tively (see Fig. 1). For a precise definition of D and G as well as for an error analysis

we would like to refer the reader to [2].

4 A Divide and Conquer Algorithm

The computational bottleneck of the algorithm discussed in [2] is the preprocessing

step of setting up the graph, i.e., the computation of the set of intersections ω . If

this is done in a straightforward way, meaning by comparing each fiber with every

other, the computational cost is O(n2
Φ), where nΦ is the number of fibers in Ω . For

large geometries with very many fibers this will of course soon become prohibitively

expensive.
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Fig. 1. Fibrous structure with in-

duced nodes and faces.

Fiber

Subdomain

Fig. 2. Subdomains Ωj and fibers ϕi.

The idea to cure this problem is to divide our domain Ω into subdomains

Ωj, j ∈ {1, . . .nΩ ,x1
} × {1, . . . ,nΩ ,x2

}× {1, . . . ,nΩ ,x3
} =: J , where nΩ ,x1

, nΩ ,x2
,

and nΩ ,x3
are the number of subdomains in each spatial direction, j is a multi-index,

and ∪j∈J Ωj = Ω (cf. Fig. 4). For simplicity, we again suppose that Ωj is brick

shaped. Then for each fiber we check through which subdomains it passes and con-

struct the sets Φj, where Φj denotes the set of fibers passing through Ωj. Then for

each j ∈J we check for intersections among all ϕ ∈ Φj. In Algorithm 1 we make

these considerations more formal.

Remark 1. The condition λ2(Ωj ∩Ωĵ) 6= 0 in step 8 of Algorithm 1 means that we

only check adjacent subdomains which have a common face with the previous sub-

domain. We don’t need to take into consideration those adjacent subdomains which

only have a common edge or point. This is because fibers are volumetric objects. In

particular they have a strictly positive diameter.

Remark 2. It should be noted that the standard straightforward approach of testing

each fiber with any other for intersection is a special case of Algorithm 1 – consider

the case #J = 1.

4.1 Numerical Complexity of Algorithm 1

Now, we would like to obtain an estimate of the numerical cost of Algorithm 1 in

order to be able to compare it with the complexity of the straightforward approach of

checking each fiber with respect to any other one for intersection. It is evident, that

this straightforward approach requires O(n2
Φ) operations.

Since for general randomly generated fiber geometries the computation of the

numerical complexity of Algorithm 1 would go into too much detail concerning

the generation of such geometries, we perform our analysis only for one particu-

lar structure with regularly arranged infinitely long fibers (cf. Fig. 5). More pre-
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1: Φj = /0 ∀j ∈J
2: for i = 1, . . . ,nΦ do

3: Compute an end point xi of ϕi and determine j ∈J such that xi ∈Ωj.

4: Set Φj = Φj∪{ϕi}, i.e., add ϕi to the set of fibers passing through Ωj.

5: Set J̃ = {j}. The subdomains corresponding to J̃ are those intersected by ϕi and

having at least one neighbor which hasn’t been checked for intersection with ϕi, yet.

6: while #J̃ 6= 0 do

7: for j ∈ J̃ do

8: Let Ĵ be the set of all ĵ such that λ2(Ωj∩Ω
ĵ
) 6= 0 and ϕi /∈Φ

ĵ
, where λ2 is the

two-dimensional Lebesgue measure. The subdomains corresponding to Ĵ are

those neighbors of Ωj for which intersection with ϕi hasn’t been verified yet.

9: for ĵ ∈ Ĵ do

10: if ϕi crosses Ω
ĵ

then

11: Set Φ
ĵ
= Φ

ĵ
∪{ϕi}, i.e., ϕi is added to the set of fibers passing through Ω

ĵ
.

12: Set J̃ = J̃ ∪{ĵ}. Since Ω
ĵ

is intersected by ϕi we now in turn need to

check the neighbors of Ω
ĵ

for intersection with ϕi, too.

13: end if

14: end for

15: Set J̃ = J̃ \{j}. Since all neighbors of Ωj have been checked for intersection

with ϕi, j is removed from J̃ .

16: end for

17: end while

18: end for

19: for j ∈J do

20: for ϕi ∈Φj do

21: for ϕk ∈Φj and k > i do

22: if ϕk and ϕi haven’t been tested for intersecting yet then

23: Test ϕk and ϕi for intersection and add a corresponding node to the graph if

the fibers cross.

24: end if

25: end for

26: end for

27: end for

Algorithm 1: Compute a graph corresponding to a fiber geometry.

cisely, we assume that our domain is the unit cube, i.e., Ω = [0,1]3. The fibers

are defined by connecting the following pairs of points {(0,h/2+ i2h,h/2+ i3h),
(1,h/2 + i2h,h/2 + i3h)}, {(h/2+ i1h,0,h/2+ i3h), (h/2 + i1h,1,h/2 + i3h)}, and

{(h/2 + i1h,h/2 + i2h,0), (h/2 + i1h,h/2 + i2h,1)}, for i1, i2, i3 = 0,1, . . . ,1/h− 1.

Here we tacitly assume that 1/h ∈ N. Additionally, we require the diameters of all

fibers to be smaller than the side lengths of the subdomains, each of which is as-

sumed to be of equal cubic size and shape. It is evident that the example geometry

just described is quite particular. In fact, it can be easily seen that the number of in-

tersections is rather large compared to a random geometry with an equal number of

fibers. Despite being artificial we will however see below that this geometry is quite

representative in terms of the computational costs of Algorithm 1. Table 1 gives an
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Fig. 3. Interior and boundary nodes for a

regular fiber structure.
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Fig. 4. Geometry with 1% svf and equal

parts of long and short fibers.

overview of the computational costs of the different steps of Algorithm 1 when ap-

plied to this example geometry.

Based on the information in Table 1 we can see that the total numerical complex-

ity of Algorithm 1 (i.e., steps 1-27) is given by

O(nΦ nΩ ,x1
)+O

(
n2

Φ

nΩ ,x1

)
. (3)

Thus, we easily deduce that choosing

nΩ ,x1
= O(

√
nΦ) (4)

leads to a total numerical complexity of

O(n
3/2
Φ ) (5)

when applied to our regular example geometry sketched in Fig. 5. This is of course

a major improvement compared to the complexity O(n2
Φ) of the standard approach.

Remark 3. It should be noted here that the reasoning above is somewhat specific for

our example geometry. For general randomly generated fibrous geometries with mul-

tiple fiber lengths and diameters we cannot obtain such a nice and compact formula

as in (5). Nevertheless, our considerations above are surprisingly representative for

more general cases as a collection of examples in section 5 shows.

5 Numerical Results and Conclusions

Now, let us take a look at the actual numerical performance of Algorithm 1 when

applied to large randomly generated fibrous geometries. In order to do this, we first
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Steps Order of Complexity

10-13 O(1)

9-15 O(1) Since #Ĵ ≤ 6.

6-17 O(nΩ ,x1
) Since the number of subdomains that each fiber passes

through is O(nΩ ,x1
) and each subdomain is checked

at most once. Note that nΩ ,x1
= nΩ ,x2

= nΩ ,x3
and that

we require the fiber diameters to be smaller

than the side lengths of the subdomains.

2-18 O(nΦ nΩ ,x1
)

20-26 O
(
(#Φj)

2
)

= O

(
n2

Φ

n4
Ω ,x1

)
Since in each subdomain of our regular fiber structure

(see Fig. 5) there are 3
(hnΩ ,x1

)2 fibers and in the entire

domain Ω there are 3
h2 fibers, i.e., nΦ = 3

h2 .

19-27 O

(
#J

n2
Φ

n4
Ω ,x1

)
= O

(
n2

Φ
nΩ ,x1

)
Since #J = n3

Ω ,x1
for our cubic domain.

Table 1. Computational cost of Algorithm 1

specify the parameters used in the generation of our structures. All geometries are

generated by the GeoDict2008 software using a grid of 20003 voxels on Ω , which

is chosen to be a cube with side-length 5.6e-3m. Thus, the side-length of a voxel

is 2.8e-6m. We consider structures having a solid volume fraction (svf) of 1%, 3%,

and 5%, i.e., 1%, 3%, and 5% of Ω are occupied by fibers, respectively. For each of

these svf we consider a geometry with equal parts of infinitely long and short fibers

(“short” meaning 100 voxels long), one with infinitely long fibers only, and one with

short fibers only. We then consider a series of choices for nΩ ,x1
= nΩ ,x2

= nΩ ,x3
and

compare the cpu-times needed for setting up the graphs. To get an impression how

these fibrous geometries look we refer to Fig. 4, which shows a plot of the structure

with 1% svf and with equal parts of short and long fibers.

The tables in Figs. 5-7 show the data specific of the problems under consideration

(number of fibers, number of nodes, etc.) and the computational costs for the cases

nΩ ,x1
= nΩ ,x2

= nΩ ,x3
= 1 and nΩ ,x1

= n
opt
Ω ,x1

, where n
opt
Ω ,x1

is the optimal choice for

nΩ ,x1
in terms of the time needed for setting up the graph corresponding to the fibrous

geometry. (In order to determine n
opt
Ω ,x1

we consider a series of nΩ ,x1
, see the top plots

in Figs. 5-7.)

As we can see, the reduction of cpu-time when choosing nΩ ,x1
= n

opt
Ω ,x1

instead of

nΩ ,x1
= 1 is substantial. For the geometries involving only long fibers the time needed

for setting up the graph is roughly cut in half (cf. table in Fig. 5). For the fibrous

structure with a solid volume fraction (svf) of 5% and only short fibers the cpu-time

for constructing the graph is reduced to less than 0.3% when choosing nΩ ,x1
= n

opt
Ω ,x1

(table in Fig. 6). Looking at the table in 7 we see that also for geometries consisting

of short and long fibers the cpu-time for setting up the graph is reduced by more than

one order of magnitude when choosing the optimal nΩ ,x1
.

For the instances that we consider we see that by choosing nΩ ,x1
= n

opt
Ω ,x1

the com-

putational cost of constructing the graph corresponding to our geometry can be re-
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(x), vs.
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nΦ with 5% deviation margins and a linear

leasts-squares fit.

svf short fibers 0% 0% 0%

svf long fiber 1% 3% 5%

# fibers 4851 14686 24366

# interior nodes 15462 132121 351366

effective con-

ductivity tensor

2.64e-2 - -

- 2.65e-2 -

- - 2.64e-2

3.13e-2 - -

- 3.14e-2 -

- - 3.15e-2

3.66e-2 - -

- 3.64e-2 -

- - 3.64e-2

# coarse grid cells 1 153 1 323 1 403

total CPU-time

(sec.)

2.3e0 1.4e0 2.9e1 1.7e1 1.1e2 6.3e1

CPU-time con-

structing the

graph

1.9e0 1.1e0 1.8e1 9.4e0 5.7e1 2.7e1

CPU-time solv-

ing the system

< 1 < 1 1.1e1 7.6e0 5.4e1 3.5e1

Computational results and costs.

Fig. 5. CPU-time analysis and numerical results for geometries with only long fibers and solid

volume fractions of 1%, 3%, and 5%, respectively.
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duced to the same order of magnitude as the cost needed for solving the arising linear

system. (Here we would like to remark that for solving the linear system we employ

the ILU preconditioned Conjugate Gradient (CG) solver implemented in the LAS-

Pack package (see http://www.mgnet.org/mgnet/codes/laspack/html/laspack.html) us-

ing a relative residual reduction of 1e− 6 as stopping criterion.) Before, i.e., when

choosing nΩ ,x1
= 1, almost the entire computational cost for determining an approx-

imation to the effective thermal conductivity tensor was devoted to setting up the

computational graph. Therefore, it was not feasible to spend much effort on speed-

ing up the solution of the arising linear system. Now, with this new approach of

dividing Ω into subdomains, we see that in some cases the cpu-time for solving the

arising linear system can actually exceed the cpu-time for constructing the graph (cf.

tables in Figs. 5-7). With this observation it seems reasonable to also optimize the

process of solving the arising linear system - e.g. by employing algebraic multi-grid

methods and the like - which is a topic of our further research.

As an interesting side note we would like to remark that in all investigated cases

(cf. tables in Figs. 5-7) the cpu-time for solving the linear system also reduces (by

around 30%) when choosing the optimal nΩ ,x1
. This observation seems surprising,

since the graph constructed by Algorithm 1 and the number of CG-iterations re-

quired to satisfy the convergence criterion are independent of the choice for nΩ ,x1
.

The only plausible explanation that we have for this certainly desirable side ef-

fect is that for nΩ ,x1
= n

opt
Ω ,x1

the nodes of the graph are not in the same order as

when choosing nΩ ,x1
= 1. Apparently, this re-odering of the unknowns speeds up

the matrix-vector multiplication of the system matrix, which could be due to a better

cache-optimization. Providing a detailed analysis of this issue is, however, beyond

the scope of this article.

Looking at the graphs in Figs. 5-7, where the cpu-time for constructing the graph

is plotted vs. the choice for nΩ ,x1
, we see that there is in fact an optimal choice n

opt
Ω ,x1

.

This observation can be explained via (3). When choosing nΩ ,x1
larger (smaller) than

n
opt
Ω ,x1

the first (second) term of (3) dominates.

Now, we would like to investigate the question, whether relation (4), which we

derived for the very regular fiber structure shown in Fig. 5, also holds - at least ap-

proximately - for our randomly generated geometries. For this we plot n
opt
Ω ,x1

against√
nΦ for different fibrous geometries (see lower left plots in Figs. 5-7). Of course,

we can only hope for (4) to hold for structures with different solid volume fractions

but with the same kind of fibers. Therefore, we only try to verify (4) for these cases.

Looking at the least squares linear fit (blue line) in Figs. 5-7, where the fitted line is

forced through the origin and thus the only free parameter is its slope, we can see

that (4) is indeed quite well satisfied. Nevertheless, the constant involved in (4) is

different for different choices of fibers. For the sequence of geometries with svf 1%,

3%, and 5% and only long fibers it is approximated to 2.54e-1, while for the cases of

only short fibers it is approximately 9.89e-2. The constant for the geometries involv-

ing equal parts of long and short fibers is estimated to 1.11e-1 and thus in-between

the two former ones.

In addition to n
opt
Ω ,x1

the lower left plots in Figs. 5-7 also show margins which

correspond to those choices for nΩ ,x1
for which the cpu-time for setting up the graph
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# fibers 66953 202845 341543
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ductivity tensor
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(sec.)
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CPU-time con-

structing the

graph

3.6e2 1.6e0 3.4e3 1.0e1 9.8e3 2.8e1

CPU-time solv-

ing the system

< 1 < 1 6.5e1 4.7e1 1.1e2 7.7e1

Computational results and costs.

Fig. 6. CPU-time analysis and numerical results for geometries with only short fibers and

solid volume fractions of 1%, 3%, and 5%, respectively.
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Fig. 7. CPU-time analysis and numerical results for geometries with with equal parts of short

and long fibers and solid volume fractions of 1%, 3%, and 5%, respectively.
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is at most 5% higher than for n
opt
Ω ,x1

. For practical problems it of course doesn’t make

sense to apply Algorithm 1 for several choices of nΩ ,x1
to determine the optimal one.

Instead one is interested in approximating n
opt
Ω ,x1

beforehand, and then use this ap-

proximation in the calculations. It is quite obvious that (4) can be used to predict an

approximation to n
opt
Ω ,x1

. Furthermore, it should be noted that the margins shown in 5-

7 indicate that - especially for large and thus costly geometries - one doesn’t really

have to approximate n
opt
Ω ,x1

very accurately in order to obtain almost optimal per-

formance. Thus, it seems promising that an automatic way of approximating n
opt
Ω ,x1

,

which could then be used in Algorithm 1, can be implemented. This is also an objec-

tive of our further research.

On the whole, we would like to conclude that Algorithm 1 constitutes a very

powerful enhancement of the approach presented in [2]. The computational costs are

significantly reduced, which makes our graph-laplacian approach applicable to even

larger geometries containing even more fibers.
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