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Summary. We discuss some overlapping domain decomposition algorithms for solving

sparse nonlinear system of equations arising from the discretization of partial differential equa-

tions. All algorithms are derived using the three basic algorithms: Newton for local or global

nonlinear systems, Krylov for the linear Jacobian system inside Newton, and Schwarz for lin-

ear and/or nonlinear preconditioning. The two key issues with nonlinear solvers are robustness

and parallel scalability. Both issues can be addressed if a good combination of Newton, Krylov

and Schwarz is selected, and the right selection is often dependent on the particular type of

nonlinearity and the computing platform.

1 Introduction

For solving partial differential equations on large scale parallel computers, do-

main decomposition is a natural choice. Overlapping Schwarz methods and non-

overlapping iterative substructuring methods are the two major classes of domain

decomposition methods [12, 13, 15]. In this paper we only consider overlapping

methods for solving large sparse nonlinear system of equations arising from the

discretization of nonlinear partial differential equations, i.e., for a given nonlinear

function F : Rn→ Rn, we compute a vector u ∈ Rn, such that

F(u) = 0, (1)

starting from an initial guess u(0) ∈ Rn. Here F = (F1, . . . ,Fn)
T , Fi = Fi(u1, . . . ,un),

and u = (u1, . . . ,un)
T . One of the popularly used techniques for solving (1) is the

so-called inexact Newton algorithms (IN) which are described briefly here. Suppose

u(k) is the current approximate solution and J = F ′(u(k)), a new approximate solution

u(k+1) can be computed through the following steps: first find an inexact Newton

direction p(k) by solving the Jacobian system

Jp(k) = F(u(k)) (2)

such that ‖F(u(k))−Jp(k)‖ ≤ ηk‖F(u(k))‖, then compute the new approximate solu-

tion
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u(k+1) = u(k)−λ (k)p(k). (3)

Here ηk ∈ [0,1) is a scalar that determines how accurately the Jacobian system needs

to be solved using, for example, Krylov subspace methods. λ (k) is another scalar

that determines the step length in the selected inexact Newton direction. Sometimes

when J is not explicitly available, one can use the matrix-free version [11]. IN has

several well-known features.

(a) Fast convergence. If the initial guess is close enough to the desired solution then

the convergence is very fast (quadratic) provided that the ηk’s are sufficiently

small.

(b) Non-robustness. The convergence, or fast convergence, happens only if a good

initial guess is available. Generally it is difficult to obtain such an initial guess

especially for nonlinear equations that have unbalanced nonlinearities [12]. The

step length λ (k) is often determined by the components with the strongest non-

linearities, and this may lead to an extended period of stagnation in the nonlinear

residual curve. We say that the nonlinearities are “unbalanced” when λ (k), in

effect, is determined by a subset of the overall degrees of freedom.

(c) Scalability. The parallel scalability of the method is mostly determined by how

the Jacobian system (2) is solved.

There are a number of strategies [7, 8, 10], such as linesearch, trust region, con-

tinuation or better ways to choose the forcing term, to make the algorithm more

robust or converge faster, however, these strategies are all based on certain global

knowledge of F or J. In other words, all equations in the system are treated equally

as if they were some of the worst equations in the system. Other ways to look at the

global nature of IN are

(d) To advance from u(k) to u(k+1), all n variables and equations need to be updated

even though in many situations n can be very large, but only a small number of

components of u(k) receive significant updates.

(e) If a small number of components of the initial guess u(0) are not acceptable, the

entire u(0) is declared bad.

(f) There are two global control variables ηk and λ (k). Any slight change of F may

result in the change of ηk or λ (k), and any slight change of ηk or λ (k) may result in

some global function evaluations and/or the solving of global Jacobian systems.

For example, if the search direction p(k) has one unacceptable component, then

the entire steplength is reduced.

Note that these global operations can be expensive when n is large and when the

number of processors is large. Using domain decomposition methods, more local-

ized treatments can be applied based on the location or the physical nature of the

nonlinearities, and the number of global operations can be made small in some situ-

ations.

We should point out that the words “local” and “global” have different meanings

in the context of domain decomposition methods [15] than in the context of nonlin-

ear equation solvers [7], among others. In nonlinear solvers, “local” means a small

neighborhood of the exact solution of the nonlinear system, and “global” means a
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relatively large neighborhood of the exact solution of the nonlinear system. In do-

main decomposition, “local” means some subregions in the computational domain

and “global” means the whole computational domain.

All the algorithms to be discussed in the paper are constructed with a combina-

tion of the three basic techniques: Newton, Krylov and Schwarz. Newton is the basic

nonlinear solver that is used for either the system defined on the whole space or some

subspaces (subdomain subspace or coarse subspace). Krylov is the basic linear solver

that is used inside a Newton solver. Schwarz is a preconditioner for either the linear

or the nonlinear solver. Many algorithms can be derived with different combinations

of the three basic algorithms. For a given class of problems and computing platform,

a special combination might be necessary in order to obtain the best performance.

The three basic algorithms are all well understood individually, however, the con-

struction of the best combination remains a challenge. The same can be said for the

software. All software components are readily available in PETSc [1], but some of

the advanced combinations have to be programmed by the user.

We next define (informally) some notations for describing domain decomposition

methods. u is understood as a discrete (or coefficients of a finite element) function

defined on the computational domain Ω which is already partitioned into a set of

subdomains {Ω δ
1 , · · · ,Ω δ

N}. Here Ω δ
i is an δ -extension of Ωi, and the collection of

{Ωi} is a non-overlapping partition of Ω . We define Rδ
i as a restriction operator

associated with Ω δ
i and R0

i as the restriction operator associated with Ωi. We denote

uΩ δ
i

as the restriction of u on Ω δ
i , and u∂Ω δ

i
as the restriction of u on the “boundary”

of Ω δ
i . Here we use the word “domain” to denote the mesh points in the interior

of the domain and “boundary” to denote the mesh points on the boundary of the

domain. Similarly, we may restrict the nonlinear function to a subdomain, such as

FΩ δ
i

. For boundary value problems considered in this paper, we assume

FΩ δ
i
(u) = FΩ δ

i
(uΩ δ

i
,u∂Ω δ

i
).

That is to say that there are no “global equations” in the system that may couple the

equations defined at a mesh point to equations defined outside a small neighborhood.

The rest of the paper is organized as follows. In Section 2, we discuss the most

popular overlapping nonlinear domain decomposition method, Newton-Krylov-

Schwarz algorithm, and in Sections 3–6, we discuss some more advanced nonlin-

ear methods. Some final remarks are given in Section 7.

2 Newton-Krylov-Schwarz Algorithms

Newton-Krylov-Schwarz (NKS) is simply the application of a linear Schwarz pre-

conditioner for solving the Jacobian equation (2) in the inexact Newton algorithm

[2, 3]. Depending on what type of Schwarz preconditioner is used (additive, multi-

plicative, restricted, one-level, two-level, etc), there are several NKS algorithms. Let

us define the subdomain preconditioners as
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Ji = Rδ
i J(Rδ

i )T , i = 1, . . . ,N,

then the additive Schwarz preconditioner can be written as

M−1
AS =

N

∑
i=1

(Rδ
i )T J−1

i Rδ
i .

Because of its simplicity, NKS has become one of the most popular domain decom-

position methods for solving nonlinear PDEs and is the default nonlinear solver in

PETSc [1]. The nonlinear properties of NKS are exactly the same as that of inexact

Newton. For example, the initial guess has to be sufficiently close to the solution in

order to obtain convergence, and fast convergence can be achieved when the nonlin-

earity is well balanced. NKS addresses the scalability issue (c) of IN well, but not

the other issues (a, b, d–f).

3 Classical Schwarz Alternating Algorithms

Let (u
(0)

Ω δ
1

, . . . ,u
(0)

Ω δ
N

) be the initial guess for all subdomains. The classical Schwarz

alternating algorithm (SA) can be described as follows:

k = 1, . . . , till convergence condition is satisfied

i = 1, . . . ,N

define u
(k)

∂Ω δ
i

using
{

u
(k−1)

Ω δ
j

,1≤ j ≤ N
}

or
{

u
(k)

Ω δ
j

,1≤ j < i
}

compute u
(k)

Ω δ
i

by solving FΩ δ
i

(
u

(k)

Ω δ
i

,u
(k)

∂Ω δ
i

)
= 0.

(SA)

The algorithm doesn’t belong to the class of IN algorithms and, in general, not

share properties (a–f). The method is usually not used by itself as a nonlinear solver

because of its slow convergence, but in some cases when the nonlinearities are iso-

lated within some of the subdomains, the method can be a good alternative to IN.

Note that SA doesn’t involve any global operations.

4 Nonlinear Additive Schwarz Preconditioned Inexact Newton

Algorithms

The basic idea of nonlinearly preconditioned inexact Newton algorithms [4, 9] is to

find the solution u ∈ Rn of (1) by solving an equivalent system

F(u) = 0 (4)

using IN. Systems (1) and (4) are said to be equivalent if they have the same solution.

For any given v ∈ Rn, we define a subdomain projection Ti(v), which is a function

with support in Ω δ
i , as the solution of the following subspace nonlinear system
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FΩ δ
i
(v−Ti(v)) = 0,

for i = 1, . . . ,N. Then a nonlinearly preconditioned function is defined as

F(u) =
N

∑
i=1

Ti(u).

It can be shown that, under certain conditions, for this particular F, (1) and (4) offer

the same solution subject to the error due to different stopping conditions and precon-

ditioners. This algorithm is often referred to as the additive Schwarz preconditioned

inexact Newton algorithm (ASPIN). Sometimes we call it a left preconditioned IN

because in the linear case (i.e., F(u) = Ju−b) F(u) = (∑N
i=1(R

δ
i )T J−1

i Rδ
i )(Ju−b).

When using IN to solve (4), the Jacobian of F, or its approximation, is needed.

Because of the special definition of the function F, its Jacobian can only be given as

the sum of matrix-vector products and the explicit elements of F′ are not available.

It is known that for left preconditioned linear iterative methods, the stopping

condition is often influenced by the preconditioner. The impact of the preconditioner

on the stopping condition can be removed if the preconditioner is applied to the

right. Unlike linear preconditioning, the switch from left to right is not trivial in the

nonlinear case. A right nonlinear preconditioner will be discuss in a later section of

the paper.

5 Nonlinear Elimination Algorithms

The nonlinear elimination algorithm (NE) was introduced in [12] for nonlinear al-

gebraic systems with local high nonlinearities. It was not introduced as a domain

decomposition method, but we include it in the paper because it is the main motiva-

tion for the algorithm to be discussed in the next section. Suppose that the function F

is more nonlinear in the subdomain Ω δ
i , then we can eliminate all unknowns in this

particular subdomain and let Newton work on the rest of the variables and equations.

Let y = u|Ω δ
i

and x = u|Ω\Ω δ
i

, then using the implicit function theorem, under some

assumptions, we can solve for y in terms of x; i.e., solve

FΩ δ
i
(x,y) = 0

for y, which symbolically equals to y = F−1

Ω δ
i

(x). After the elimination, we can use the

regular Newton method for the rest of the system which is more balanced, at least in

theory,

FΩ\Ω δ
i

(
x,F−1

Ω δ
i

(x)
)

= 0.

The algorithm has some obvious advantages. We mention some of its disadvantages

as a motivation for the algorithm to be discussed in the next section. In practice, it

is often difficult to tell which components are more nonlinear than the others, and

the situation may change from iteration to iteration. The algorithm may introduce
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sharp jumps in the residual function near the interface of x and y. Such jumps may

lead to slow convergence or divergence. Some improved versions are given in [6]. In

the next section, we combine the ideas of ASPIN and NE into a right preconditioned

Newton method.

6 Nonlinear Restricted Additive Schwarz Algorithms

In [5], a right preconditioned inexact Newton algorithm was introduced as follows:

Find the solution u ∈ Rn of (1) by first solving a preconditioned nonlinear system

F(G(v)) = 0

for v, and then obtain u = G(v). For any given v ∈ Rn, we define a subdomain pro-

jection Ti(v), which is a function with support in Ω δ
i , as the solution of the following

subspace nonlinear system

FΩ δ
i
(v+Ti(v)) = 0,

for i = 1, . . . ,N. Then the nonlinear preconditioning function is defined as

G(v) = v+
N

∑
i=1

R0
i Ti(v).

Here the non-overlapping restriction operator R0
i effectively removes the sharp jumps

on the interfaces of the overlapping subdomains. In the linear case

G(v) = v−
( N

∑
i=1

(R0
i )

T J−1
i Rδ

i

)
(Jv−b),

which can be regarded as a restricted additive Schwarz preconditioned Richardson

method.

This preconditioner doesn’t have to be applied at every outer Newton iteration.

It is used only when some local high nonlinearities are sensed, somehow. Below we

describe the overall algorithm (NKS-RAS). The goal is to solve equation (1) with a

given initial guess u(0). Suppose u(k) is the current solution.

Step 1 (Nonlinearity Checking): Check local and global stopping conditions.

• If the global condition is satisfied, stop.

• If local conditions indicate that nonlinearities are not balanced, go to

Step 2.

• If local conditions indicate that nonlinearities are balanced, set ũ(k) = u(k),

go to Step 3.

Step 2 (RAS): Solve local nonlinear problems on the overlapping subdomains

to obtain the subdomain corrections Ti(u
(k))

FΩ δ
i

(
u(k) +Ti(u

(k))
)

= 0 for i = 1, . . . ,N.
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Drop the solution in the overlapping part of the subdomain and compute the

global function G(u(k)) and set

ũ(k) = G(u(k)).

Go to Step 3.

Step 3 (NKS): Compute the next approximate solution u(k+1) by solving the

following system

F(u) = 0

with one step of NKS using ũ(k) as the initial guess.

Go to Step 1.

The nonlinearity checking step is important. However, we only have a few ad hoc

techniques such as computing the residual norm subdomain by subdomain (or field

by field in the case of multi-physics applications). If some of the subdomain (or sub-

field) norms are much larger than for other subdomains, we label these subdomains

as highly nonlinear subdomains and proceed with the RAS elimination step. Other-

wise, when the nonlinearity is more or less balanced we bypass the RAS step and go

directly to the global NKS step. The subdomain nonlinear systems in Step 2 do not

need to be solved very accurately since the solutions are used only to construct an

initial guess for Step 3. In NKS-RAS, a nonlinear system is set up on each subdo-

main, but in practice, not all subdomain nonlinear problem needs to be solved. In the

not-too-nonlinear regions, the solver may declare to have converged in 0 iteration.

7 Concluding Remarks

In this paper, we have given a quick overview of overlapping domain decomposition

methods for solving nonlinear partial differential equations. The two key issues of

nonlinear methods are robustness and scalability. Both issues can be addressed by us-

ing some combinations of the three basic algorithms: Newton, Krylov and Schwarz.

Several algorithms are presented in the paper together with some of their advan-

tages and disadvantages. Depending on the particular types of nonlinearities and the

computing platform, different combinations of the three basic algorithms may be

needed in order to obtain the best performance and robustness. Due to page limit,

applications have not been discussed in the paper. Some of them can be found in the

references.
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