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Summary. We derive and analyze new boundary element (BE) based finite element dis-

cretizations of potential-type, Helmholtz and Maxwell equations on arbitrary polygonal and

polyhedral meshes. The starting point of this discretization technique is the symmetric BE

Domain Decomposition Method (DDM), where the subdomains are the finite elements. This

can be interpreted as a local Trefftz method that uses PDE-harmonic basis functions. This dis-

cretization technique leads to large-scale sparse linear systems of algebraic equations which

can efficiently be solved by Algebraic Multigrid (AMG) methods or AMG preconditioned

conjugate gradient methods in the case of the potential equation and by Krylov subspace iter-

ative methods in general.

1 Introduction

We introduce new finite element methods based on the symmetric boundary ele-

ment domain decomposition method presented in [5], which can be applied with

general polygonal or polyhedral meshes. That is, each element of the mesh may be

any polygon or polyhedron, since we treat the elements as subdomains. There are

many important practical applications where one wants to discretize PDEs on such

kinds of meshes without further decomposition of the polyhedra, see e.g. [6] and [1].

Boundary integral operators are utilized to obtain a method which solves for traces

of the solution on the element boundaries, from which the solution may be obtained

via a representation formula. Simple, low-order boundary element spaces are used

to approximate traces on the element surfaces, yielding a finite element method with

PDE-harmonic basis functions.

Since boundary integral operators are used only locally, piecewise constant co-

efficients are admissible, and the coupling of boundary element functions is local.

Consequently, sparse linear systems are obtained, which can be solved by Krylov

iterative methods. For the potential equation, the resulting system is symmetric and
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positive definite, and algebraic multigrid (see [9]) is a very effective preconditioner

in the conjugate gradient solver.

2 The Potential Equation

Let Ω ⊂ Rd be a bounded domain with a polygonal (d = 2) or polyhedral (d = 3)

Lipschitz boundary Γ = ∂Ω , and let d ∈ {2,3} be the dimension of the computa-

tional domain Ω . In this section, we assume for simplicity that d = 2. As a model

problem, we consider the Dirichlet boundary value problem (BVP) for the potential

equation

−div(a(x)∇u(x)) = f (x) for x ∈Ω , u(x) = g(x) for x ∈ Γ . (1)

We assume that the coefficient a is piecewise constant, f ∈ L2(Ω), and g ∈H1/2(Γ ).
Further, we suppose that there is a non–overlapping decomposition of our domain Ω
into eh shape-regular polygonal elements Ωi such that

Ω =
eh⋃

i=1

Ω i, Ωi∩Ω j = /0 for i 6= j, Γi = ∂Ωi, Γ i j = Γ i∩Γ j (2)

and that a(x) = ai > 0 for x ∈ Ωi, i = 1, . . . ,eh. The domain Ω is assumed to be

scaled in such a way that diam(Ωi) = O(h)≤ h0 < 1/2 for all i = 1, . . . ,eh. Under the

assumptions made above, there obviously exists a unique weak solution u ∈ H1(Ω)
of the BVP (1).

Using the local Dirichlet-to-Neumann map

ai∂u/∂νi = aiSiu|Γi
−Ni f on Γi, (3)

we observe that the variational formulation of (1) is equivalent to the associated

variational formulation on the skeleton ΓS = ΓS,h = ∪eh
i=1Γi (see, e.g., [7]): find u ∈

H1/2(ΓS) with u = g on Γ such that

eh

∑
i=1

∫

Γi

ai(Siui)(x)vi(x)dsx =
eh

∑
i=1

∫

Γi

(Ni f (x))vi(x)dsx (4)

for all v ∈ H
1/2
0 (ΓS), where ui = u|Γi

and vi = v|Γi
denote the traces of u and v on

Γi, respectively. The Steklov–Poincaré operator Si and the Newton potential operator

Ni have different representations (see again [7]). Here we are using the symmetric

representation

Si = Di +(
1

2
I +K′i )V

−1
i (

1

2
I +Ki) : H1/2(Γi)→ H−1/2(Γi) (5)

of the local Steklov–Poincaré operator Si via the local single layer potential inte-

gral operator Vi : H−1/2(Γi)→ H1/2(Γi), the local double layer potential operator
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Ki : H1/2(Γi)→ H1/2(Γi), its adjoint K′i : H−1/2(Γi)→ H−1/2(Γi), and the local hy-

persingular boundary integral operator Di : H1/2(Γi)→ H−1/2(Γi), see, e.g., [11] for

the definition and properties of these boundary integral operators. The operator Ni is

defined by the equation

Ni = V−1
i Ñi,0 : H̃−1(Ωi)→ H−1/2(Γi), (6)

where the Newton potential operator Ñi,0 is given by the relation

(Ñi,0 f )(x) =
∫

Ωi

U∗(x− y) f (y)dy, x ∈ Γi. (7)

Here U∗(x) =−(1/2π) log |x| and U∗(x) = 1/(4π|x|) denotes the fundamental solu-

tion of the negative Laplace operator −∆ for d = 2 and d = 3, respectively.

For simplicity (higher-order versions can be constructed in the same way), we

use continuous piecewise linear boundary element functions for approximating the

potential u on the skeleton ΓS and piecewise constant boundary element functions for

approximating the normal derivatives ti = ∂u/∂νi on the boundary Γi of the polygo-

nal element Ωi. This yields the element stiffness matrices

Si,h = aiDi,h +ai

(
0.5I⊤i,h +K⊤i,h

)(
Vi,h

)−1(
0.5Ii,h +Ki,h

)
(8)

and the element load vectors

fi,h = I⊤i,h
(
Vi,h

)−1
fN
i,h, (9)

where the matrices Vi,h, Ki,h, Di,h and Ii,h arise from the BE Galerkin approximation

to the single layer potential operator Vi, double layer potential operator Ki, hypersin-

gular integral operator Di and the identity operator Ii living on Γi, respectively. Ii,h

is nothing but the mass matrix. The vector fN
i,h is defined by the Newton potential

identity

(fN
i,h, ti,h) =

∫

Γi

∫

Ωi

U∗(x− y) f (y)dyth,i(x)dsx (10)

for all vectors ti,h corresponding to the piecewise constant functions th,i on Γi. Now,

we obtain the BE-based FE system

Shuh = fh (11)

by assembling the stiffness matrix Sh and the load vector fh from the element stiffness

matrices (8) and the element load vectors (9), respectively, and by incorporating the

Dirichlet boundary condition as usual.

The solution of (11) provides an approximation to the Dirichlet trace of the so-

lution to (1) on the boundary ∂Ωi of all elements Ωi, i = 1, . . . ,eh. Applying the

Dirichlet-to-Neumann map locally (i.e. element-wise), we may obtain an approxi-

mate solution ũhto u in each element Ωi via the representation formula (see, e.g., [7]

or [11]).
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Following [5] we immediately obtain the discretization error estimate

‖u−uh‖h ≤ c(u)h3/2 (12)

in the mesh-dependent norm ‖v‖2
h := ∑

eh
i=1 ‖v|Γi

‖2
H1/2(Γi)

for a sufficiently (piecewise)

smooth solution u, where uh is the continuous piecewise linear function on the skele-

ton ΓS,h corresponding to the Dirichlet nodal values and to the nodal values from

the solution vector uh of (11). The discretization error estimate (12) yields the usual

O(h) estimate of the discretization error u− ũh in the H1(Ω)-norm.

In our first numerical experiments we solve the Laplace equation in Ω = (0,1)×
(0,1) with prescribed Dirichlet conditions on the boundary Γ = ∂Ω . The Dirichlet

datum g is given as the trace of the function g(x) = log‖x− x∗‖ on Γ , where the

singularity x∗ = (1.1,1.1)⊤ is located outside the computational domain Ω .

Figure 1 shows a close-up view of a polygonal mesh that was generated with the

help of a software tool from the group of Olaf Steinbach at the TU Graz. Table 1

Fig. 1. Close-up view of a polygonal mesh

provides numerical results for 3 meshes (with Nh nodes) which were separately gen-

erated by the software tool mentioned above. The coarsest, the intermediate, and the

finest mesh contain polygonal elements with a maximum of 13, 7 and 8 nodes, re-

spectively. The systems of algebraic equations were solved by the Preconditioned

Conjugate Gradient (PCG) method. The preconditioner is defined by a standard Al-

gebraic MultiGrid (AMG) method implemented in the AMG package PEBBLES

developed by [9]. More precisely, the AMG preconditioning step consists of one

symmetric V-cycle with one pre-smoothing step and one post-smoothing step. The

AMG level denotes the number of levels used in the algebraic multigrid process. The

auxiliary coarse grid matrices are constructed by Galerkin projection. We observe

that the times for constructing the stiffness matrices and for setting up the AMG also

depend on the number of nodes of the polygons. The termination condition for the

PCG iterations is defined as the reduction of the initial error by the factor εit = 10−12
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with respect to the ShC−1
h Sh-energy norm. We remark that the ShC−1

h Sh-energy norm

is close to the Sh-energy norm if Ch is a good preconditioner for Sh. The nearly

constant iteration numbers demonstrate the excellent preconditioning properties of

the AMG preconditioner. The last two columns provide discretization errors in the

L2(ΓS)- and L2(Ω)-norms. Note that the L2(ΓS)-norm is a mesh-dependent norm.

AMG PCG

Nh Level Sh Setup Cycle Iter. ‖u−uh‖0,ΓS
‖u−uh‖0,Ω

44249 4 4.3 17.2 0.35 15 1.29 E-4 4.88 E-6

71735 4 4.3 9.1 0.42 17 1.42 E-4 3.85 E-6

247250 5 17.0 82.0 1.80 17 6.73 E-5 1.51 E-6

Table 1. Numerical results for the polygonal mesh (CPU time in seconds).

3 The Helmholtz Equation

Let Ω ⊂R3 be a bounded domain with a polyhedral Lipschitz boundary Γ = ∂Ω . As

a model problem, we consider the interior Dirichlet BVP for the Helmholtz equation

−∆u(x)−κ2u(x) = 0 for x ∈Ω , u(x) = g(x) for x ∈ Γ . (13)

We assume that the wavenumber κ > 0 is piecewise constant and not an interior

eigenvalue, and g ∈ H1/2(Γ ). The case of a non-zero source function can be treated

via the Newton potential operator as in the previous section, but we omit this for

simplicity.

Given a domain decomposition satisfying (2), the BE-based FE method for the

Helmholtz equation is formally identical to the method presented in the previous

section for the potential equation (with a = 1 and f = 0). That is, the variational

method is simply equation (4), with the Steklov–Poincaré operator Si still given by

(5) but with different operators Di, Ki, and Vi. The appropriate boundary integral

operators are given, e.g., in [8], [10], or [11], and the representation formula holds

with the Helmholtz fundamental solution U∗(x) = eiκ|x|/(4π|x|).

4 The Maxwell Equations

Under the same assumptions on Ω and κ , we consider the interior Dirichlet BVP for

the time-harmonic Maxwell equation

curl curl u−κ2u = 0 in Ω , γtu := u×n = g on Γ , (14)

where n is the outward unit normal vector. Developing a method of the form (4)

for (14) involves quite technical trace spaces and boundary integral operators, so we

only outline the main results here.
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[2] defined the operator divΓ and the appropriate function space X := H
−1/2

‖ (divΓ ,Γ )

for the tangential trace γt on Lipschitz polyhedral domains, for which γτ : H(curl,Ω)→
X is linear and continuous. In [3], potential operatorsΨΨΨ E ,ΨΨΨ M : X→H(curlcurl ,Ω)
are defined such that the representation formula

u = ΨΨΨ M(γtu)+ΨΨΨ E(γNu) (15)

holds, where γNu := κ−1γtcurl u is the Neumann trace.

Defining the boundary integral operators C,M : X→ X by

C := {γt}Γ ◦ΨΨΨ E = {γN}Γ ◦ΨΨΨ M,

M := {γt}Γ ◦ΨΨΨ M = {γN}Γ ◦ΨΨΨ E ,

where {}Γ denotes the average across Γ , the Dirichlet-to-Neumann map can be ex-

pressed as

S : X→ X, S := C +(
1

2
I +M)C−1(

1

2
I−M).

The inverse C−1 : X→ X is given by [3, Corollary 5.5], and this representation of S

is symmetric with respect to the bilinear form < v,w >τ ,Γ :=
∫

Γ (w×n) ·v.

Since the trace operator γt is oriented with respect to the normal vector, in order

to define a trace operator on the mesh skeleton we arbitrarily choose a global normal

vector field nS on the skeleton ΓS. Then γS
t := (nS · ni)γt,i, on each Γ h

i , uniquely

defines a tangential trace on Γ h
S . Now the space γS

t (H(curl,Ω)) is denoted XS :=

H
−1/2

‖ (divΓ ,Γ ), with the mesh-dependent norm ‖v‖2
Xs

:= ∑
eh
i=1 ‖(nS ·ni)v|Γ h

i
‖2

Xi
.

The Maxwell skeleton variational formulation is to find v ∈ XS satisfying v = g

on Γ and

eh

∑
i=1

< Sivi,wi >τ ,Γ h
i
= 0, for all w ∈ XS such that w|Γ = 0.

The space XS can be approximated by the lowest-order Raviart-Thomas space de-

fined on a triangular mesh of ΓS. Galerkin discretization of the operators Ci, Mi, and

Ii then yields matrices Ci,h, Mi,h, and Ii,h, respectively, whereby we define the ap-

proximation

Si,h := Ci,h +(
1

2
Ii,h +Mi,h)C

−1
i,h (

1

2
Ii,h−Mi,h)

to Si. Assembling the local element matrices Si,h and incorporating the boundary

conditions (where uh × n approximates g) results in a system of linear algebraic

equations similar to the system (11).

In Table 2 we report the results of some numerical experiments in solving the

linear system (11) in the Maxwell case by the GMRES iterative solver without a pre-

conditioner. A preconditioner remains to be derived, so the iteration counts grow in

these computations. The error relative to the exact solution ∇×(U∗(x− (1.5,0,0))x)
in the mesh-dependent norm of L2(ΓS) is of order O(h1/2). Since the area of the mesh

skeleton ΓS grows in proportion to h−1, one may consider the L2(ΓS)-error of the trace
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to be of order O(h). Also, the L2(Ω)-norm of the error is of order O(h), comparable

to the standard finite element method with the lowest-order Nedelec elements. We

refer the reader to [4] for more numerical results.

h Edges Iter. ‖u−uh‖0,ΓS
‖u‖0,ΓS

‖u−uh‖0,Ω

1/8 2156 243 5.09 E-2 0.490 9.19 E-3

1/16 16024 556 3.70 E-2 0.677 4.81 E-3

1/32 123440 1219 2.73 E-2 0.948 2.52 E-3

1/64 968800 2987 2.13 E-2 1.33 1.39 E-3

Table 2. Tetrahedral mesh of the unit cube Ω = (0,1)3, κ = 1.

5 Conclusions

Our technique can obviously be generalized to potential equations with piecewise

smooth coefficients a(.) and, therefore, to nonlinear potential equations arising, e.g.,

in electromagnetics. On each element Ωi, a(.) can be approximated by its value at

the center of gravity of Ωi. Moreover, we can easily construct polygonal and poly-

hedral elements with special geometric features like small holes and inclusions. In

particular, periodic structures allow a fast generation of the finite element equations

or a fast matrix-vector multiplication. The generalization to problems for which the

fundamental solution is locally known (for frozen coefficients) is obviously feasible.

The methods presented here can be applied to acoustic and electromagnetic scatter-

ing problems by coupling with BEM in the unbounded exterior domain. We mention

that one and the same technique is used for generating the finite and the boundary

element equations. The latter issues is addressed in detail in a paper by [4].
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