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Summary. Optimized Schwarz methods have been developed at the continuous level; in or-

der to obtain optimized transmission conditions, the underlying partial differential equation

(PDE) needs to be known. Classical Schwarz methods on the other hand can be used in

purely algebraic form, which have made them popular. Their performance can however be

inferior compared to that of optimized Schwarz methods. We present in this paper a discovery

algorithm, which, based purely on algebraic information, allows us to obtain an optimized

Schwarz preconditioner for a large class of numerically discretized elliptic PDEs. The algo-

rithm detects the nature of the elliptic PDE, and then modifies a classical algebraic Schwarz

preconditioner at the algebraic level, using existing optimization results from the literature on

optimized Schwarz methods. Numerical experiments using elliptic problems discretized by

Q1-FEM, P1-FEM, and FDM demonstrate the algebraic nature and the effectiveness of the

discovery algorithm.

1 Introduction

Optimized Schwarz methods are based on transmission conditions between subdo-

mains which are different from the classical Dirichlet conditions. The transmission

conditions are adapted to the partial differential equation in order to lead to faster

convergence of the method. Optimized transmission conditions are currently avail-

able for many types of scalar PDEs: for Poisson problems including a diagonal

weight, see [3], for indefinite Helmholtz problems, see [4] and for advection reac-

tion diffusion problems, see [2, 5]. More recently, it was shown that one can easily

transform a classical algebraic Schwarz preconditioner such as restricted additive

Schwarz (RAS) methods, into an optimized one, by simply changing some matrix

entries in the local subdomain matrices, see [6]. However, in order to know what

changes to make, one needs to know what the underlying PDE is, and thus the opti-

mized RAS method has so far not become a black box solver, in contrast to classical

RAS. We propose in this paper a discovery algorithm which is able to extract all the

required information from the given matrix, and thus to make optimized RAS into a

black box solver, for discretizations of the elliptic partial differential equation
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ν∆u+a ·∇u−ηu = f in Ω , (1)

with suitable boundary conditions. Here, ν , a and η are all functions of x, and by

a suitable choice, we can handle all elliptic PDEs for which currently optimized

transmission conditions are known. In this paper, we focus on Robin transmission

conditions, which are of the form

(∂n + p)ui = (∂n + p)u j (2)

at the interface between subdomain i and j. In general, the optimized scalar parame-

ter p depends on the local mesh size h, the overlap width Ch, the interface diameter

L, and the coefficients of the underlying PDE, i.e. p = p(h,Ch,L,ν ,a,η).
A discretization of (1) leads to a linear system of equations of the form

Au = (K +S +M)u = f, (3)

where K is the stiffness matrix, KI = 0 with I the vector of all ones, S is skew-

symmetric from the advection term of the PDE, SI = 0, and M is a mass matrix

from the η term in the PDE. For a black box preconditioner, only the matrix A is

given, and the decomposition (3) needs to be extracted automatically, in addition to

the mesh size and the diameter of the interface, in order to use the existing formulas

for the optimized parameter p in a purely algebraic fashion. We also need to extract

a normal derivative for (2) algebraically.

In what follows, we assume that we are given the restriction operators R j and R̃ j

of a restricted additive Schwarz method for the linear system (3), and the associated

classical subdomain matrices A j := R jART
j . The restricted additive Schwarz precon-

ditioner for (3) would then be ∑ j R̃T
j A−1

j R j, and the optimized restricted additive

Schwarz method is obtained by slightly modifying the local subdomain matrices A j

at interface nodes, in order to obtain Ã j, which represent discretizations with Robin,

instead of Dirichlet boundary conditions, see [6]. In order for this replacement to

lead to an optimized Schwarz method, an algebraic condition needs to be satisfied,

which requires a minimal overlap and a certain condition at cross-points; for details,

see [6].

2 Discovery Algorithm

We now describe how appropriate matrices Ã j for an optimized Schwarz precon-

ditioner can be generated algebraically for discretizations of the PDE (1) given in

matrix form (3). There are three steps in the algorithm to generate the modified Ã j:

1. Interface detection.

2. Extraction of physical and discretization parameters.

3. Construction of the optimized transmission condition.
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2.1 Interface Detection

For a matrix A ∈ RN×N , let S(A) be its canonical index set, i.e. the set of integers

going from 1 to N, and let c∈NN be its multiplicity, i.e. ci contains the total number

of non-zero entries in the corresponding row of A. For a subdomain decomposition

given by restriction matrices R j, let the matrix A j = R jART
j have the canonical index

S(A j) with multiplicity c j. Then the set of indices B(A j) representing the interfaces

of subdomain j corresponds to the non-zero entries of c j−R jc, where c is the multi-

plicity of A. The set B(A j) indicates which rows of the matrix A j need to be modified

in order to obtain Ã j for an optimized preconditioner.

2.2 Extraction of Physical and Discretization Parameters

We start by guessing the decomposition (3) of A by computing

S =
1

2
(A−AT ), M = diag(AI), K =

1

2
(A+AT )−M. (4)

This approach does not necessarily find the same parts one would obtain by know-

ing the discretization: for example we can only guess a lumped mass matrix and not

discover an upwind scheme. The parts we obtain however correspond to a decompo-

sition relevant for the problem.

Definition 1. Using (4) for each interface node i, we define the

• local viscosity indicator: νi := ∑ j |Ki j|/(2(ci−1)),
• local advection indicator: αi := max j |Si j|,
• local zeroth order term indicator: ηi := sign(Kii)Mii.

These three indicators are enough to reveal the PDE-like properties of the matrix

at the interface:

1. νi > 0, ηi = 0 and αi = 0: Poisson equation.

2. νi > 0, ηi > 0 and αi = 0: Poisson equation with weight, or implicit heat equa-

tion, see [3].

3. νi > 0, ηi < 0 and αi = 0: indefinite Helmholtz equation, see [4].

4. νi > 0 , ηi = 0 and αi 6= 0: advection-diffusion equation, see [5].

5. νi > 0 , ηi > 0 and αi 6= 0: implicit advection-diffusion equation, see [2].

In the other cases (except if (1) has been multiplied by minus one, which can also

be treated similarly), optimized transmission conditions have not yet been analyzed,

and we thus simply apply RAS for that particular row. We next have to estimate the

local mesh size hi. The indicators above contain in general this information, for ex-

ample for a standard five point finite difference discretization of η −ν∆ , we would

obtain νi = ν
h2 , but we cannot detect the mesh size h separately without further in-

formation. In addition, the algebraic equations could have been scaled by h, or h2, or

any other algebraically useful diagonal scaling. However, in general, the optimized

parameter p is also scaled accordingly: the analytical formulas for p all contain the
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size of the interface L and the mesh spacing h in a certain relation. Since the latter

are both interface related quantities, we use the trace of the discovered Laplacian in

order to estimate them.

Definition 2. The relevant local mesh size at point i ∈B(Ak) is

hk
i ≈

(
∑

j

|(Kk)i j|/(2ci−1)
)−1/2

, (5)

where Kk is the trace of the discovered Laplacian and ci is its associated multiplicity.

We finally need to estimate the interface diameter L of each interface. To this

end, we need to discover the dimension of the problem is. This can be achieved

using the ratio of interior nodes versus interface nodes in each subdomain. Solving

the equation (# denotes the cardinality of the set)

#B(Ak) = (#S(Ak))
d−1

d (6)

for d in each subdomain, we obtain an estimate for the dimension denoted by d̄k.

We accept a fractional dimension because it is not uncommon for example for three

dimensional domains to represent thin shells.

Definition 3. The diameter of each interface L = L jk between subdomain j and k is

estimated for 2d and 3d problems by

L jk := (#Bk(A j))
− d̄k−2

d̄k−1 ∑
i∈Bk(A j)

h
j
i , (7)

where Bk(A j) denotes the interface nodes of subdomain j with subdomain k.

2.3 Construction of the Optimized Transmission Condition

In order to construct an algebraic approximation to the Robin transmission condition

(2), we need a normal derivative approximation. Suppose that row i was identified as

an interface node. For this row, we can partition the indices denoting the position in

the row with non-zero elements into three sets:

1. the diagonal entry denoted by set {i},
2. the off-diagonal entries that are not involved in the interface denoted by Ii for

interior,

3. the off-diagonal entries that are on the interface, denoted by Fi.

These indices take values in the set of integers indexing the full matrix A, but in

order to simplify what follows, we re-label these indices from 1 to J. Let {x j}J
j=1

be a set of arbitrary spatial points with associated scalar weights {w j}J
j=1, and let

δx ji = x j−xi. In order to define a normal derivative at the point xi, we assume that
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‖δx ji‖ ≤ h, and ∑
j∈Fi

w jδx ji = O(h2), (8)

and we define an approximate unit outward normal vector n at xi by

n =− ∑
j∈Ii

w jδx ji/‖ ∑
j∈Ii

w jδx ji‖. (9)

A situation might arise were the set Ii is empty. In this case the connectivity of the

matrix must be exploited in order to find a second set of points connected to the

points in Fi. By removing the points lying on any boundary a new set Ii can be

generated. This procedure can be repeated until the set is non-empty. Let the vectors

τk, k = 1, ...,d−1 be an orthonormal basis spanning the tangent plane implied by n

at xi, i.e. n · τk = 0.

Proposition 1. If conditions (8) are satisfied, and in addition wi = −∑ j 6=i w j, then

for a sufficiently differentiable function u around xi, we have

− ∑J
j=1 w ju(x j)

‖∑ j∈Ii
w jδx ji‖

= n ·∇u(xi)+O(h). (10)

Proof. Using a Taylor expansion, and the sum condition on w j, we obtain

J

∑
j=1

w ju(x j) =
J

∑
j=1

w j(u(xi)+δx ji ·∇u(xi)+O(h2))

= (wi + ∑
j 6=i

w j)u(xi)+ ∑
j 6=i

w jδx ji ·∇u(xi)+O(h2)

= ∇u(xi) ·∑
j 6=i

w jδx ji +O(h2).

Now using the second condition in (8), and the decomposition of the gradient into

normal and tangential components, ∇u(xi) = u0n+∑d−1
k=1 ukτk, we get

J

∑
j=1

w ju(x j) = ∇u(xi) · ∑
j∈Ii

w jδx ji +O(h2),

= u0n · ∑
j∈Ii

w jδx ji +
d−1

∑
k=1

ukτk · ∑
j∈Ii

w jδx ji +O(h2).

The double sum vanishes, since the sum on j equals n up to a multiplicative constant

and n · τk = 0. Now using the definition of the approximate normal n, and using that

u0 = n ·∇u(xi), leads to the desired result.

Note that the formula for the approximation of the normal derivative (10) does

not need the explicit computation of a normal or tangential vector at the interface.

Definition 4. An approximation AI
i to the normal derivative is generated from matrix

A at a line i having a non-empty set Ii by performing (in this order): aii = 0, ai j = 0

for j ∈ Fi, aii =−∑ j 6=i ai j.
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There are also optimized Schwarz methods with higher order transmission con-

ditions, which use tangential derivatives at the interfaces. Such methods involve for

the Poisson equation the Laplace-Beltrami operator at the interface, see [3], or more

generally the remaining part of the partial differential operator, see for example [2]

or [1]. If we want to use higher order transmission conditions also at the algebraic

level, we need to extract the corresponding discretization stencil at the interface as

well. This stencil has the same dimensions as AI
i and contains all the coefficients

lying in F.

Definition 5. The complement of AI
i is the matrix AF

i generated from matrix A at a

line i having a non-empty set Ii by performing (in this order): aii = 0, ai j = 0 for

j ∈ Ii, aii =−∑ j 6=i ai j.

The matrices used to detect the nature of the PDE cannot be employed in the

construction of the optimized transmission operator, because they might be rank de-

ficient. The detected mass matrix could be employed, if one is present. However,

for more generality, we choose the diagonal mass matrix for an interface node i as

Di = h2
i Aii: its sign is correct for the elliptic operator for the definite case; for the

indefinite case, it needs to be multiplied by −1. From Definitions 4 and 5, and the

first of the assumptions (8), we see that the normal and complement matrices are

both O(1) (the complement is a difference of 2 normal derivatives at the interface

divided by h). However, the entries in the matrix are proportional to 1/h2. Thus the

normal derivative needs a scaling factor of 1/h. Consequently, both the mass and

complement matrices are divided by h.

The algebraic representation of the transmission condition for domain k in the

matrix is then given by

Tk ≡ diag
(pk

hk

Dk

)
+AI

k +diag
(qk

hk

)
AF

k , (11)

where the division of a vector by a vector is component wise.

3 Numerical Experiments

We consider three different discretizations, FDM, Q1-FEM, and P1-FEM applied to

an a priori unknown positive definite Helmholtz operator. In all cases the solution is

u(x,y) = sin(πx)sin(πy) on the domain (0,1)× (0,1) with Dirichlet boundary con-

ditions. We present results for the iterative form of the algorithm and its acceleration

by GMRES. For all cases a starting vector containing noise in (0,1) was employed.

In the first set of experiments, see Table 1, a square corner (0,1/2)× (0,1/2) is

considered as one of the two subdomains, and the L-shaped rest is the other subdo-

main. These domains are uniformly discretized for the first experiment by a finite

difference method, and for the second experiment by a Q1 finite element method. In

each experiment, an overlap of two mesh sizes is added. We can see from Table 1

that the optimized Schwarz methods generated purely algebraically from the global
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h 1/8 1/16 1/32 1/64 1/128 1/256

Q1-FEM:

iterative: RAS 6 15 32 67 136 275

iterative: O0 8 14 23 33 48 65

iterative: O2 8 13 19 24 30 36

GMRES: RAS 4 6 10 13 19 26

GMRES: O0 5 7 9 12 15 19

GMRES: O2 5 7 9 11 13 16

FDM:

iterative: RAS 7 16 32 67 136 275

iterative: O0 8 16 27 42 63 90

iterative: O2 8 15 24 33 43 53

GMRES: RAS 4 8 11 17 24 35

GMRES: O0 4 6 8 10 14 17

GMRES: O2 5 6 9 10 12 14

Table 1. Structured corner domain: the same algebraic algorithm was employed

matrix perform significantly better than the classical Schwarz method, both for the

iterative and the GMRES accelerated versions.

We next show an example of a triangularly shaped decomposition of the square

into two subdomains, as shown in Fig. 1. The discretization is now performed using
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Fig. 1. Left panel: triangularly shaped domain Ω1 extended by an overlap of size 3h.

Right panel: non-convex domain Ω2.

an unstructured triangular mesh and a P1 finite element discretization. We show in

Table 2 again a comparison of the iteration counts for the classical and various op-

timized Schwarz methods, obtained purely at the algebraic level with the discovery

algorithm. We observe again that substantial gains are possible.
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Triangles 534 2080 8278

P1-FEM:

iterative: RAS 16 35 71

iterative: O0 12 22 32

iterative: O2 11 18 24

GMRES: RAS 11 14 20

GMRES: O0 8 11 15

GMRES: O2 8 11 14

Table 2. Unstructured corner domain: the same algebraic algorithm was employed
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