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Summary. A recent theoretical result on optimized Schwarz algorithms, demonstrated at the

algebraic level, enables the modification of an existing Schwarz procedure to its optimized

counterpart. In this work, it is shown how to modify a bilinear finite-element method based

Schwarz preconditioning strategy originally presented in [6] to its optimized version. The

latter is employed to precondition the pseudo-Laplacian operator arising from the spectral

element discretization of the magnetohydrodynamic equations in Elsässer form.

1 Introduction

This work concerns the preconditioning of a pseudo-Laplacian operator3 associated

with the saddle point problem arising at each time-step in a spectral element based

adaptive MHD solver. The approach proposed is a modification of the method devel-

oped in [6] where an overlapping Schwarz preconditioner for the pseudo-Laplacian

was constructed using a low order discretization of the weak Laplacian. The finite-

element blocks, representing the additive Schwarz, are replaced by so called op-

timized Schwarz blocks [12]. Two types of overlapping subdomains, employed to

construct the finite-element block preconditioning are investigated. The first one is

cross shaped and shows good behavior for additive Schwarz (AS) and restricted ad-

ditive Schwarz (RAS). Improved convergence rates of the optimized RAS (ORAS)

version are completely dominated by the corner effects [2]. Opting for a second grid

that includes the corners seems to correct this issue. For the zeroth order optimized

transmission condition (OO0) an exact tensor product form is available while for the

second order version (OO2) version a slight error is introduced in order to preserve

the properties of the operators and enable the use of fast diagonalization techniques

(FDM) [3].

3 A.k.a: consistent Laplacian or approximate pressure Schur complement.
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2 Governing Equations and Discretization

For an incompressible fluid with constant mass density ρ0, in two spatial dimensions,

the magnetohydrodynamic (MHD) equations are:

∂tu+u ·∇u =−∇p+∇×b×b+ν∇2u, (1)

∂tb = ∇× (u×b)+ξ ∇2b (2)

∇ ·u = 0, ∇ ·b = 0 (3)

u(x, t = 0) = ui, b(x, t = 0) = bi; u(x, t)|∂D = ub, b(x, t)|∂D = bb (4)

where u and b are the velocity and magnetic field (in Alfvén velocity units, b =
B/
√

µ0ρ0 with B the induction and µ0 the permeability); p is the pressure divided

by the (constant) mass density, ρ0, and ν and ξ are the kinematic viscosity and the

magnetic resistivity. In the closed domain D, these equations are solved in Elsässer

form [5]:

∂tZ
±+Z∓ ·∇Z±+∇p−ν±∇2Z±−ν∓∇2Z∓ = 0 (5)

∇ ·Z± = 0 , (6)

with Z± = u±b and ν± = 1
2
(ν ±η). The initial and boundary conditions for Z±

are trivially specified in terms of (4); we do not provide them here. The velocity u

and magnetic field b can be recovered by expressing them in terms of Z±. For spatial

discretization of (5)-(6), a PN −PN−2 spectral element formulation is chosen to pre-

vent the excitation of spurious pressure modes. In the latter formalism, the domain D

is composed of a union of non-overlapping quadrangles, Ek: D ⊇ ⋃K
k=1 Ek =: Th

where PN = {vh ∈ L2(D) | vh|Ek
◦ TEk

∈ (PN ⊗ PN)(Ek) ∀ Ek ∈ Th } and TEk
is

the image of the reference element [−1,1]× [−1,1]. Finally PN and the space

Uγ := {w ∈ (H1(D))2| w = γ on ∂D}, with the usual definition for H1(D), are em-

ployed to define finite dimensional representations of Z± (and u, b), p and test func-

tions, ζ± and q:

Z±h ∈ UN = UZb

⋂
(PN ∩C0(D))2, ζ±h ∈ UN

0 = U0

⋂
(PN ∩C0(D))2,

ph, qh ∈ YN−2
0 = L2

0(D)
⋂

PN−2, (7)

see for instance [9]4. The basis for the velocity expansion in PN ∩C0(D) is the set

of Lagrange interpolating polynomials on the Gauss-Lobatto-Legendre (GL) quadra-

ture nodes, and the basis for the pressure is the set of Lagrange interpolants on the

Gauss-Legendre (G) quadrature nodes {ηl}N−2
l=0 . The functions in UN and YN−2

0 are

represented as expansions in terms of tensor products of basis functions within each

subdomain Ek. Substituting these (Galerkin) truncations into the variational form of

(5)-(6), and using appropriate quadrature rules, we arrive at a set of semi-discrete

equations written in terms of spectral element operators:

4 L2
0(D) := {p ∈ L2(D) | ∫D p = 0} which fixes the null space for the pressure.
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M
dẐZZ
±
j

dt
=−MC

∓ẐZZ
±
j +D

T
j p̂pp
±−ν±LẐZZ

±
j −ν∓LẐZZ

∓
j (8)

D
jẐZZ
±
j = 0, (9)

for the jth (∈ [1, · · · ,d]) component. The variables ẐZZ
±

represent the time-dependent

coefficients of the polynomial expansions of Z±h collocated at the GL node points,

and p̂pp
±

are values of the pressure coefficients at the G node points. Hence, in this

discretization vector quantities reside on a different mesh than the pressures leading

to a staggered formulation. Note that because the constraints (6), are enforced sep-

arately on Z±, Eq. (8) contains a different pressure for each Elsässer vector. This

essentially adds a pressure force, − 1
2
∇(p+ + p−), to the momentum equation, and

an electromotive force, − 1
2
∇(p+− p−), to the induction equation. In effect, we add

a Lagrange variable to the induction equation, in the same way that it already exists

for the velocity, such that ∇ ·B = 0 in its discrete form–a form of divergence clean-

ing that renders the gradient (curl) and divergence operators consistent numerically.

Note that if p̂pp
+ = p̂pp

−
, the discrete approximation faithfully reproduces the continu-

ous equations; in practice we find good agreement between these fields. The oper-

ators M, L, and C, are the well-known mass matrix, weak Laplacian and advection

operators, respectively (c.f. [4]), and D j represent the Stokes derivative operators, in

which the GL basis function and its derivative operator are interpolated to the G node

points, and multiplied by the G quadrature weights. All two dimensional operators

are computed as tensor products of their component 1D operators. We note the effect

of D j, on (vector) quantities in UN : they take a derivative that itself resides on the G

nodes; hence, the discrete divergence (9) is collocated on the same grid as the dis-

crete pressure. The effect of the transposed Stokes operator D
T
j , on the other hand,

is to compute a derivative of a YN−2 quantity, which will be collocated with the Z±,

u, and b. For time marching, we employ a simple second-order Runge-Kutta scheme

(RK2) [1, p. 109]. The complete time discretization at each stage is (from 8):

ẐZZ
±,k

j =

ẐZZ
±,n

j −
k

2
∆ tM−1

(
MC

∓ẐZZ
±,k−1

j −D
T
j p̂pp
±,k−1 +ν±LẐZZ

±,k−1

j +ν∓LẐZZ
∓,k−1

j

)
(10)

where k = 1 for the first stage and k = 2 for the last one5. We require that each

stage satisfy (9) in its discrete form, so multiplying (10) by D
j, summing over j, and

setting the term D
jẐZZ
±
j = 0, we arrive at the following pseudo-Poisson equation for

the pressures, p̂pp
±,k−1

:

E p̂pp
±,k−1

:= D
j
M
−1

D
T
j p̂pp
±,k−1 = D

jĝgg
±,k−1
j , (11)

where, for completeness, the quantity

5 ẐZZ
±,k=0

j := ẐZZ
±,n
j and ẐZZ

±,n+1

j := ẐZZ
±,k=2

j
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ĝgg
±,k−1
j =

1

k
∆ t M

−1
(
MC

∓ẐZZ
±,k−1

j +ν±LẐZZ
±,k−1

j +ν∓LẐZZ
∓,k−1

j

)
− ẐZZ

±,n

j

is the remaining inhomogeneous contribution (see [11]). In general, we are interested

in high Reynolds number—where ν and η tend to zero—solutions of (5)-(6) (or (8)-

(9)), for which the nonlinear terms Z∓ ·∇Z± (or C
∓ẐZZ
±
j ) dominate the viscous terms.

We note that explicit time-stepping presents no problem if the Courant restriction is

not violated. Equation (11) is solved using a preconditioned iterative Krylov method,

and our focus in the remainder of this paper concerns the preconditioning of this

system.

3 From Classical to Optimized Schwarz

Fig. 1. One overlapping subdomain, Ēk. Overlap-

ping corner nodes are represented as red squares.

El , is a nonoverlapping neighboring element.

The principle behind optimized

Schwarz methods consists of re-

placing the Dirichlet transmission

condition present in the classi-

cal Schwarz approach by a more

general Robin boundary condition

[23]. The latter contains a posi-

tive parameter that can be used

to enhance convergence. Optimized

Schwarz methods find the best pa-

rameter through analytical tech-

niques. For instance, a Fourier anal-

ysis of certain continuous ellip-

tic partial differential equations, is

performed in [7] (and references

therein). In [6], there is numerical

evidence that the weak Laplacian

is spectrally close to the pseudo-

Laplacian (11). Consequently, the

construction of the various Schwarz preconditioners are based on a weak formulation

of the Poisson problem.

Suppose that the linear elliptic operator L := −∆ with forcing f and boundary

conditions P := ∂
∂n

needs to be solved on D. Then, an iterative algorithm that can be

employed to solve the global problem Lp = f is

Lpn+1
k = f in Ēk (12)

P(pn+1
k ) = 0 on ∂D∩ Ēk and pn+1

k = pn
l on Γkl, ∀l s.t. ∂ Ēk ∩El 6= /0

where the sequence with respect to n will be convergent for any initial guess u0.

This is none other than the classical Schwarz algorithm at the continuous level cor-

responding to RAS at the matrix level. The optimized version of the above algorithm

replaces the Dirichlet transmission conditions between subdomains by
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[
∂ pk

∂n
+T (pk,r,q,τ)

]n+1

Γkl

=

[
∂ pl

∂n
+T (pl ,r,q,τ)

]n

Γkl

(13)

where T (pk,r,q,τ) ≡ rpk − ∂
∂τ (q ∂ pk

∂τ ), defines a transmission condition of order 2

with two parameters, r = r(x,y) and q = q(x,y), with r,q ≥ 0 on Γkl and q = 0 at

∂Γkl as specified in [10]. The algorithm, like in the classical case, converges to the

solution of Lp = f with P(p) = 0 on ∂D [23]. Its discrete algebraic version is

Ãk p̂pp
n+1
k =

(
Aii

k AiΓ
k

CΓ i
k CΓ Γ

k

)(
p̂pp

i
k

p̂pp
Γ
k

)n+1

=

(
f i
k

f Γ
k +Ck p̂pp

n

)

with CΓ i
k , CΓ Γ

k and Ck corresponding to the discrete expressions of the optimized

transmission conditions. At this point notice that Aii
k is exactly the same block as

in the original Schwarz algorithm. A simple manipulation leads to the following

preconditioned system

{
I−

K

∑
k=1

RT
Ek

Ã−1
k

(
0 0

0 Ck

)
RT

Ēk

}
p̂pp =

{
K

∑
k=1

RT
Ek

Ã−1
k RĒk

}
f (14)

where RĒk
and RT

Ek
are Boolean restriction and extension (by zero) matrices to the

G quadrature points of element Ēk and Ek, respectively. As seen in Fig. 1, two differ-

ent overlapping domains can be considered. The first is cross-shaped (without corner

nodes) and imposes optimized boundary conditions on ∂ Ēk\{4 corner elements} and

Dirichlet ones on the 4 corner elements represented by the square G quadrature points

in Fig. 1. The second is the square (with corner elements) domain having optimized

conditions on ∂ Ēk. The above results are completely algebraic and independent of

the underlying space discretization method. The complete proof in the additive and

multiplicative case with and without overlap can be found in [12]. Finally the one

level optimized Schwarz preconditioned linear system (11) is

P−1
ORASE p̂pp

±,k−1 = P−1
ORASD

jĝgg
±,k−1
j (15)

where P−1
ORAS ≡ {∑K

i=1 RT
Ei

Ã−1
i RĒi

} and k is the RK2 stage number.

4 Discretization of the Optimized Schwarz

In order to obtain the optimized preconditioner, it suffices to compute the matrices

Ã−1
k in equation (14) from the model problem (12) at convergence (pk = pn

k) with the

boundary condition (13). For simplicity, the rhs of the latter is set to g. Therefore the

weak formulation of the problem is to find uk ∈ H1(Ēk) such that

∫

Ēk

∇ϕ ·∇p+ ∑
l∈neik

∫

Γkl

(
rϕ p+q

∂ϕ

∂τkl

∂ p

∂τkl

)
=
∫

Ēk

ϕ fk + ∑
l∈neik

∫

Γkl

ϕg (16)
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for all ϕ ∈ H1(Ēk). We introduce the tiling of the Gauss-Legendre quadrature

points in element Ēk by Qk
h = ∪mk

l=1Ql , and the finite dimensional space Vk := {vh ∈
C0(Ēk) | vh|Ql

◦TQl
∈ (P1⊗P1)(Ql), ∀Ql ∈ Qk

h }∩H1(Ēk). The basis used to repre-

sent polynomials in Vk are tensor products of the one dimensional linear hat functions

ϕi(η j) = δi j depicted in Fig. 2 at each Gauss-Legendre quadrature point {ηl}N
l=−2.

Using the one dimensional definition for the stiffness and lumped mass matrices,

Kk
i j :=

∫ ηN

η−2

dϕi

dη

dϕ j

dη
dη and Mk

i j :=
∫ ηN

η−2

ϕi(η)ϕ j(η)dη ,

respectively, leads to the following tensor product representation of (16):

Ãk := (Kk +T k
rb,rt

)⊗ (Mk +T k
ql ,qr

)+(Mk +T k
qb,qt

)⊗ (Kk +T k
rl ,rr

) (17)

−T k
rb,rt
⊗T k

ql ,qr
−T k

qb,qt
⊗T k

rl ,rr
.

In the last expression, T k
a,b is a matrix with only two non-zero entries at (1,1) and

(N,N), which are set to a and b respectively. The notation qr,l,b,t stands for the q

optimized parameter at either the right, left, bottom or top boundaries (idem for pa-

rameter r).

Fig. 2. Schematic of the assembly procedure.

r q

OO0, overlap H 2−1/3(k2
min)

1/3H−1/3 0

OO2, overlap H 2−3/5(k2
min)

2/5H−1/5 2−1/5(k2
min)

−1/5H3/5

Table 1. Parameters r and q used in the transmission blocks. kmin = π/S with S the character-

istic size of the element normal to the face where the parameters are required.

When rectangular elements are considered the FDM (e.g., [3]) can be used to

invert the optimized blocks. The number of operations required to invert Nd ×Nd

matrix using such a technique is O(Nd+1) and the application of the inverse is per-

formed using efficient tensor products in O(Nd+1) operations. We propose the form

derived in (17) with the r and q parameters constant on their respective faces but

eliminating the last two terms of the form T k
·,·⊗ T k

·,·. This is done in order for the

fast diagonalization technique to be applicable. Indeed, the modified mass matrix

Mk + T k
·,· is still symmetric and positive definite while the matrix Kk + T k

·,· is still

symmetric. This enables the use of the modified mass matrix in an inner product and

the simultaneous diagonalization of both tensors. When q = 0, the proposed formula

is exact.
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5 Numerical Experiments

The RAS preconditioner described above was implemented in the MHD code. This

version allows for variable overlap of the extended grid. The ORAS counterpart has

also been implemented as described, and for comparison, we use a high-order block

Jacobi (BJ). We consider first tests of a single pseudo-Poisson solve on a [0,1]2 bi-

periodic domain with exact solution p = cos(2πx)cos(2πy). In the first experiment,

we use a grid of E = 8×8 elements, and iterate using BiCGStab until the residual is

10−8 times that of the initial residual. The extended grid overlap is 2, and the initial

starting guess for the Krylov method is composed of random noise.

The first test uses non-FDM preconditioners to investigate the effect of including

corner transfers on the optimization. The results are presented in Fig. 3, in which

we consider only the OO0 optimization. Note that even though the RAS is much

less sensitive to the subdomains without corners, especially at higher Nv, the OO0

with subdomains including corners requires fewer iterations. Clearly, including the

corners is crucial to the proper functioning of the optimized methods.

In the second experiment, all the parameters are maintained except we use a

grid of E = 16×16 elements together with the FDM version of the preconditioners

to investigate performance. These results are presented on the right-most figure of

Fig. 3.

Fig. 3. Left: Plot of iteration count vs GLL-expansion node number for different precondition-

ers using subdomains with and without corners on an 8×8 element grid. Right: Comparison of

of CPU time vs. GLL-expansion node number of FDM-based preconditioners with subdomain

including corners on a 16×16 element grid.
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