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Summary. We consider the information transfer between non-matching finite element meshes

arising from domain decomposition. Dealing with complex three-dimensional geometries, es-

pecially in the case of computational mechanics and nonlinear contact problems, one can

usually not achieve a decomposition of the global domain with mere planar interfaces in a

sensible way. Thus, subdomains with warped interfaces emerge which, after an independent

discretization, yield a geometrically non-conforming decomposition with small gaps and over-

laps. In this paper, we employ a mortar approach and develop a method for the assembly of

a discrete coupling operator providing a stable information transfer across such geometrically

distinct warped interfaces.

1 Introduction

The efficient realization of an exchange of discrete information between geomet-

rically non-conforming interfaces in three-dimensional space is of high interest in

many applications. In case a domain is decomposed, even if the real boundaries of

the subdomains coincide, the discrete interior interfaces formed by independently

generated meshes will not. Besides, in computational mechanics often the use of an

a priori decomposition into structural parts with different mechanical properties is

advisable. This specifically holds true for contact problems, where the actual inter-

face is unknown in advance.

In this paper, the discretization of the coupling constraints is done in a weak

sense by a mortar approach [2], proposing the use of an L2-projection between non-

matching meshes to allow for optimal error estimates. Here, motivated by [4, 8, 9],

we develop an efficient method to compute the emerging discrete transfer operator

for meshes on warped interfaces exhibiting gaps and overlaps. The whole extent of

its applicability becomes clear when we use our operator to simulate the transmission

of forces between colliding bodies.
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2 Discrete Information Transfer

Let Γ k, k ∈ {m,s}, be a two-dimensional connected submanifold of R3 with bound-

ary. In applications each of these surfaces naturally appears as a subset of the bound-

ary of a three-dimensional domain Ω k, k ∈ {m,s}. In particular, it is assumed that

all the surface information exchange between the domains Ω m and Ω s takes place

across the segments Γ m and Γ s. For simplicity we do not consider crosspoints of

more than two interfaces.

In order to prescribe matching conditions expressing the mutual information

transfer, we assume a sufficiently smooth, bijective mapping ΦΦΦ : Γ s → Γ m to be

given, which relates the opposite interfaces. Although, in general, such a mapping is

part of the overall solution and not achievable a priori, a reasonable discrete version

reflecting coupling in normal direction can be found by a linearization, which we dis-

cuss later on. Then, for a Sobolev function u = (um,us)∈∏k∈{m,s}H
1
2 (Γ k), emerging

as the respective traces of H1-functions defined on Ω k, k ∈ {m,s}, the transmission

conditions which for second order partial differential equations commonly have to

be realized are

[u] = 0,
∂um

∂nnn
◦ΦΦΦ =

∂us

∂nnn
, a. e. on Γ s. (1)

Here, [u] := us− um ◦ΦΦΦ is the jump of u across the interface Γ := Γ m ∪Γ s and ∂
∂nnn

denotes the appropriate normal derivative on Γ .

The enforcement of discrete constraints corresponding to (1), which we present

now, is motivated by the understanding that, in a very general sense, with non-

matching meshes a pointwise coupling yields indeed a conforming approximation

but does not provide optimal discretization error estimates. So, we employ a mor-

tar approach, see [2], and impose a weak matching condition by the introduction of

suitable Lagrange multipliers on the interface.

Let Tk be a shape regular surface mesh of Γ k, k∈{m,s}, made up of triangles and

quadrilaterals. In applications these meshes are inherited from unstructured volume

meshes of the domains Ω m and Ω s, consisting of tetrahedrons, hexahedrons, pyra-

mids, and prisms. We denote the nodes of Tk by Nk. On both surface meshes, we use

the space of Lagrangian conforming finite elements of first order Xh(Γ
k) and denote

its nodal basis functions as (λ k
p)p∈Nk with λ k

p(q) = δpq, p,q ∈Nk, k ∈ {m,s}. Then,

the unconstrained product finite element space is given as Xh := ∏k∈{m,s}Xh(Γ
k). All

finite element functions will be marked by the subscript h.

We define a discrete multiplier space Mh ⊆ Xh(Γ
s) and fix a basis (ψp)p∈Ns . In

fact, Mh turns out to be an approximation space for the normal derivative on Γ and

has to be chosen compatibly. Because the multiplier space is associated with the mesh

Ts and because the values on Γ m will constrain the values on Γ s, we call entities with

superscript s slave (or non-mortar), whereas entities with superscript m are referred

to as master (or mortar). Then, the well-known weak “zero jump condition” of the

mortar method from [2] is

∫

Γ s
ψh · [uh]daaa = 0 ∀ ψh ∈Mh.
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Inspired by these weak coupling constraints, we use the representations of uh and ψh

in the chosen bases of Xh and Mh, respectively, and define the discrete mortar transfer

operator via its algebraic representation, TTT := DDD−1BBB, with the entries

dpq :=
∫

Γ s
ψpλ s

q daaa, p,q ∈Ns,

bpq :=
∫

Γ s
ψp(λ

m
q ◦ΦΦΦ)daaa, p ∈Ns, q ∈Nm. (2)

The transfer operator TTT maps discrete values on the master side via the multiplier

space Mh to the slave side. More precisely, for vm ∈ Xh(Γ
m) the function TTT vm is

the L2-projection of vm ◦ΦΦΦ onto Xh(Γ
s). Now, two possible algebraic forms of the

discrete matching conditions are

(DDDus
h)p− (BBBum

h )p = 0 or (us
h)p− (TTT um

h )p = 0 ∀ p ∈Ns. (3)

The left variant (3)1 can be used as a constraint in the saddle point formulation of

a coupled problem. The right one (3)2 allows for either the elimination of the de-

grees of freedom on the slave side or the application of a Dirichlet–Neumann type

algorithm as in [4]. Note that the approach is indeed non-conforming, i.e. the weak

coupling constraints (3) do generally not guarantee that the stronger condition (1) is

satisfied.

The constraints involving the mortar transfer operator TTT can easily be adjusted

for the approximation of a variational inequality, e.g., stemming from a free bound-

ary value problem. If DDD is a diagonal matrix with positive entries, which can be

achieved by using dual Lagrange multipliers as in [6, 7] or mass lumping, this results

in ordinary inequality constraints for all p ∈Ns. Naturally, our coupling approach is

not limited to scalar valued problems.

Finally, to prove optimal discretization error estimates for the global approxi-

mation of the considered problem, all discrete function spaces have to be chosen

appropriately. In particular, a uniform inf-sup condition between the finite element

spaces on Ω m and Ω s and the multiplier space Mh needs to hold. Then, a proof can

be carried out following [2] in case of a linear problem and following [7] in case of

a free boundary value problem.

3 The Discrete Coupling Operator

Even in the case of matching interfaces (but possibly non-matching meshes) the as-

sembly of the master-slave coupling is intricate because intersections of arbitrary

element faces have to be computed. But dealing with geometrically non-conforming

decompositions exhibiting gaps and overlaps between warped interfaces, we are

obliged to meet further challenges, since the unknown mapping ΦΦΦ directly enters

the definition of the transfer operator in (2). A first idea for the handling of this

more sophisticated case by projecting the meshes of the opposite interfaces onto an

explicitly given two-dimensional submanifold of R3 can be found in [4]. In [9] the
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interfaces are projected onto a plane varying with the slave side, instead. Then, the

coupling terms are computed by numerical integration on intersections of projected

faces in this plane. A further possibility is the automatic construction of an approxi-

mate identifying mapping ΦΦΦh as in [8].

Here, we derive an algorithm, which assembles the discrete coupling operator

from local information exclusively. We compute triangulated intersections of two

respective faces in a locally adjusted projection plane but, unlike before, carry out

the quadrature on the possibly warped slave side Γ s directly. Going beyond [9],

we give a sound derivation of our element-based approach, which does not use any

parametrizations of the two-dimensional faces and is also suitable for isoparametric

elements.

Let Fm and Fs be the sets of master and slave faces, respectively. Only to

ease the derivation of the algorithm, we assume a bounded set U ⊂ R2 and global

parametrizations ϕϕϕk : U → Γ k of Γ k, k ∈ {m,s}, to be given so that ΦΦΦ = ϕϕϕm ◦ϕϕϕ−1
s .

This means that points on the interfaces which have the same preimages in the param-

eter domain U are identified. We point out that the parametrizations will shortly be

replaced by suitable discrete and local versions, which are immediately computable

from the geometric information already available in finite element programs.

In the following, we denote the three-dimensional element belonging to the face

Fk from the mesh Tk by Ek. We generically denote the respective reference element

of Em and Es by Ê. The coordinate transformation from Ê to Ek is called GGG
Ê→Ek and

the affine transformation between two triangles T1 and T2 is GGGT1→T2
.

Ê

Fm

Fs

ϕϕϕs ϕϕϕm

T

GGG
Ê→Em

GGG
Ê→Es

GGG
T̂ m→T

GGG
T̂ s→T

T m

T s

T̂ m

T̂ s

⊂ R2

Fig. 1. Derivation of the assembly algorithm for the discrete coupling operator.

We use the decompositions of Γ m and Γ s induced by the meshes Tm and Ts and

observe the fact that the set {ΦΦΦ−1(Fm)| Fm ∈ Fm} is a partition of the slave side Γ s.

In particular, for each slave face Fs ∈ Fs we have ∪Fm∈Fm

(
Fs∩ (ϕϕϕs ◦ϕϕϕ−1

m )(Fm)
)

=
Fs. Then, integrating by substitution, we write formally,
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bpq = ∑
Fs∈Fs

Fm∈Fm

(∫

Fs∩(ϕϕϕs◦ϕϕϕ−1
m )(Fm)

ψp · (λ m
q ◦ϕϕϕm ◦ϕϕϕ−1

s )daaa

)

= ∑
Fs∈Fs

Fm∈Fm

(∫

ϕϕϕ−1
s (Fs)∩ϕϕϕ−1

m (Fm)
(ψp ◦ϕϕϕs) · (λ m

q ◦ϕϕϕm) · |det∇∇∇ϕϕϕs|daaa

)
.

We now assume that each intersection ϕϕϕ−1
s (Fs)∩ ϕϕϕ−1

m (Fm) ⊂ R2 can be divided

into finitely many triangles, and for each triangle T we denote the corresponding

triangles on the interfaces by T k := ϕϕϕk(T ), k ∈ {m,s}, see Fig. 1 in case Em and Es

are hexahedrons. Then, we transfer the triangles to the reference element with the

inverses of the three-dimensional transformations, namely T̂ k := GGG−1

Ê→Ek
(T k). Now

the two-dimensional affine transformations GGG
T̂ k→T

from these triangles T̂ k to the

triangle T can easily be computed. Hence, we have ϕϕϕk|T ≡ GGG
Ê→Ek ◦GGG−1

T̂ k→T
and are

in a position to continue the above formal calculation for the contribution of each

triangle T separately,

∫

T
(ψp ◦ϕϕϕs) · (λ m

q ◦ϕϕϕm) · |det∇∇∇ϕϕϕs|daaa =

|det∇∇∇GGG−1

T̂ s→T
|
∫

T
(ψ̂p ◦GGG−1

T̂ s→T
) · (λ̂q ◦GGG−1

T̂ m→T
) · |det∇∇∇GGG

Ê→Es(GGG
−1

T̂ s→T
)|daaa. (4)

At this we use the representations via the shape functions on the reference element,

ψp ◦GGG
Ê→Es = ψ̂p and λ m

q ◦GGG
Ê→Em = λ̂q. By abuse of notation ∇∇∇GGG

Ê→Es stands for

its restriction to the corresponding faces in the domain Ê and the codomain Es, re-

spectively. Thus, the exclusive use of the three-dimensional finite element transfoma-

tions supersedes the additional introduction of two-dimensional parametrizations of

warped faces. Besides, we note that |det∇∇∇GGG−1

T̂ s→T
|= |T̂ s|

|T | is constant because GGG
T̂ s→T

is an affine mapping.

These considerations lead to the understanding that the entries bpq of the cou-

pling matrix BBB can be computed as a sum of integrals of the form (4) over triangles.

This requires that suitable approximations of the parametrizations ϕϕϕk are known. In

fact there is no need to establish any parametrizations explicitly. We only have to

replace all triangles T , T m, and T s by approximating ones to allow for the evaluation

of the right hand side of (4). For this purpose, we introduce the following algorithm.

Firstly, the intersections and their triangulations are computed in a projection plane

locally adjusted to the slave side. Secondly, the triangles T m and T s on the respec-

tive interfaces Γ m and Γ s are created by an inverse projection. Then, an appropriate

quadrature formula can be applied on the respective reference elements directly.

Algorithm

(A1) Build an octree data structure to determine which master and slave faces are

“close” to each other.

(A2) Loop over all slave faces Fs ∈ Fs.
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(B1) Loop over all master faces Fm ∈ Fm.

(C1) Only continue if Fm is “close” to Fs.

(C2) Apply a Householder reflection H so that H(nnns) = eee3, where nnns is

a suitably chosen outer normal of the current slave face.

(C3) Compute F̃k as the convex hull of the corners of Fk projected onto

the eee1eee2-plane, k ∈ {m,s}.
(C4) Compute the intersection F̃m∩ F̃s and a triangulation ∪Ti.

(C5) Loop over all triangles Ti.

(D1) Perform an inverse projection of the corners of Ti to get cor-

responding triangles T m
i and T s

i on the original faces Fm and

Fs, respectively.

(D2) Use the transformation GGG−1

Ê→Ek
to compute the triangle T̂ k

i on

the reference element, k ∈ {m,s}.
(D3) Use a two-dimensional quadrature formula to create weights

ωl and integration points xxxm
l and xxxs

l on the triangles T̂ m
i and

T̂ s
i , respectively.

(D4) Set ω ′l := ωl |det∇∇∇GGG
Ê→Es(xxx

s
l )| |T̂ s

i |.
(D5) Add the contribution of triangle Ti,

bpq 7→ bpq +∑
l

ω ′l ψ̂p(xxx
s
l )λ̂q(xxx

m
l ), p ∈Ns, q ∈Nm,

dpq 7→ dpq +∑
l

ω ′l ψ̂p(xxx
s
l )λ̂q(xxx

s
l ), p,q ∈Ns.

(C6) End of loop over triangles Ti.

(B2) End of loop over master faces Fm.

(A3) End of loop over slave faces Fs.

The one-time creation of the octree in step (A1), which is of complexity O(|N| ·
log(|N|)), guarantees that the remaining steps of the algorithm have optimal com-

plexity O(|Ns|). For the efficient computation of the intersection F̃m∩ F̃s and a De-

launay triangulation in step (C4) we use the quickhull algorithm QHULL [1]. The

additionally needed input, a point which is a priori known to lie within the intersec-

tion, is computed by a modified simplex algorithm particularly detecting whether an

intersection is empty.

We carry out an extensive analysis of our method in context of the numerical

simulation of multi-body contact problems in [3]. In particular, we show that our

algorithm can be interpreted as an a priori approximation ΦΦΦh of the actual (contact)

mapping by a composition of local projections and inverse projections. Although,

there, ΦΦΦh is piecewisely defined and possibly discontinuous at the edges of the slave

faces, those considerations close the gap to [8].

Regarding the algorithm as an elaborate construction of an approximate map-

ping ΦΦΦh and subsequent numerical integration in step (D5), we note that the integral

is not necessarily evaluated exactly since, in general, the integrand is not a polyno-

mial. An analysis of the additional consistency error due to inexact constraints has
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not been achieved yet. But a similar problem arises for the mortar method in case of

geometrically matching interfaces if a quadrature rule is used only based on either

Tm or Ts, see [5] and the references therein.

4 Numerical Results

Fig. 2. Cut through deformed body with u1 and u3; normal stresses and one tangential stress

component at the non-matching warped interfaces (from left to right).

Our numerical studies, not all presented here, show that the coupling by means

of the developed discrete mortar transfer operator results in a discretization with op-

timal convergence for diverse problem classes and performs very well in various

geometrical situations. Here, we consider two vector valued examples from compu-

tational mechanics assuming linear elastic material behavior. We are not concerned

with complex overall geometries but rather focus on the information transfer across

complicated interfaces.

The first example virtually reflects the ideal case where two bodies have to be

glued at interfaces coinciding in the continuous setting. In case dual multipliers on

warped interior interfaces are used and Ts is considerably coarser than Tm, the au-

thors in [6] observe artificial oscillations of the deformations as well as the stresses.

In contrast, even if hs/hm ≈ 8/1, our method yields a smooth solution and does not

require any stabilization of the dual multipliers, see Fig. 2. Moreover, one can see

that the occurring interface stresses are very well resolved although there are only 81

nodes on the slave side.

As second example we present the numerical solution of a variational inequality

arising from a contact problem. Figure 3 shows two separate bodies with bulging

interfaces being pressed by non-symmetric Dirichlet boundary conditions at the

top and the bottom. Here, for the coupling of the entirely independent hexahedral

meshes, which only happens in normal direction, we use standard nodal multipliers

and lumping of the matrix DDD. Finally, we note that the computed discrete contact

stresses are quite smooth despite the large variations in the local shape of the collid-

ing interfaces.
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Fig. 3. Initial geometry with bulges (left); different cuts through deformed bodies with von

Mises stresses (center); normal stresses at contact boundary (right).
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