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Summary. Optimized Schwarz methods form a class of domain decomposition algorithms in

which the transmission conditions are optimized in order to achieve fast convergence. They

are usually derived for a model problem with two subdomains, and give efficient transmission

conditions for the local coupling between neighboring subdomains. However, when using a

large number of subdomains, a coarse space correction is required to achieve parallel scala-

bility. In this paper we demonstrate with a simple model problem that a two-level optimized

Schwarz preconditioner is much more effective than a corresponding two-level Restricted Ad-

ditive Schwarz preconditioner. The weak dependence on the mesh size is retained from the

one-level method, while gaining independence on the number of subdomains. Moreover, the

best Robin transmission condition is well approximated by using the analysis from the two

subdomain case, under Krylov acceleration.

1 Introduction

In the last ten years, a new class of domain decomposition methods has emerged

and has been developed: Optimized Schwarz Methods (OSM). The main idea is to

replace the Dirichlet transmission conditions of the classical Schwarz iteration by

Robin or higher order conditions, and then optimizing the free parameters in these

conditions to obtain the best convergence. In addition to providing fast convergence,

the optimized transmission conditions allow us to use very small overlapping regions

(as well as no overlap), causing only a weak dependence of the convergence on the

mesh size. Optimized Schwarz methods were first introduced in [6] for the advection-

diffusion equation, and then studied for a variety of problems, for example in [3, 4, 5].

In all of these studies, the analysis of the convergence is done only for a model

problem with two infinite or rectangular subdomains, for which a Fourier transform

can be applied, thus making possible the explicit optimization of the transmission

conditions. In more practical situations with many subdomains, numerical experi-

ments show that such optimized transmission conditions lead to efficient local cou-

pling between neighboring subdomains, but there are no theoretical estimates on the

convergence rate of the Schwarz iteration in that case.
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It is well-known that domain decomposition techniques are not scalable with the

number of subdomains, unless a global mean of communication between the sub-

domains is incorporated. This is often achieved by a coarse space or coarse grid

correction. For optimized Schwarz methods, it is often claimed that the same coarse

grid corrections applied to “classical” Schwarz methods can be employed to remove

the dependence on the number of subdomains, but little numerical evidence of this

fact are published, and no theoretical results are yet available. In the early paper

of [7], two coarse space preconditioners were proposed that improve considerably

the convergence rate of the Schwarz iteration as we increase the number of subdo-

mains; these preconditioners are specific to non-overlapping decompositions, where

the problem is first reformulated as an interface problem.

In this paper, we consider the overlapping Optimized Restricted Additive Schwarz

(ORAS) preconditioner from [8], and apply a standard coarse grid correction to ob-

tain a two-level method (see [9] and references therein for the two-level Additive

Schwarz preconditioner). We verify with experiments that the weak scaling with re-

spect to the mesh size h is preserved, in agreement with the theory on OSM, and that

we gain independence on the number of subdomains for generous overlap. Moreover,

we investigate whether the formulas for the optimized parameters, derived in the case

of two subdomains, still provide good approximations for the best parameters for the

two-level ORAS preconditioner when applied to many subdomains.

The paper is organized as follows. In Section 2, we introduce a simple model

problem and describe the one-level and two-level preconditioners under considera-

tion. We also discuss some practical implications of an algebraic condition required

in the analysis of [8]. In Section 3, we present several numerical results for the two-

level preconditioners, in different scaling scenarios. Finally, in Section 4, we find the

best Robin parameter numerically and compare it with the values provided by the

formulas, which were derived in the two subdomain case.

2 Domain Decomposition Preconditioners

We consider the simple positive definite elliptic problem −∆u = f , on the unit

square, with homogeneous Dirichlet boundary conditions. We use finite differences

to discretize this problem on a uniform grid with n + 2 points in each dimension

(h := 1/(n+1)). This leads to a linear system Au = b. The domain of computation is

decomposed into Mx×My rectangular subdomains in the natural way, as illustrated

by Fig. 1.

2.1 One-Level Preconditioners

Let {Ω̃ j} denote a non-overlapping partition of the unknowns. By extending these

sets with C−1
2

layers of unknowns, we get an overlapping decomposition {Ω j} with

a physical overlap of width L = Ch. Let R̃ j and R j be the restriction operators on the

subsets {Ω̃ j} and {Ω j} respectively, and A j := R jART
j be the induced local matrices.

We consider the following two preconditioners
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Fig. 1. Example of a uniform domain decomposition into 4 overlapping subdomains. A zoom

near the crosspoint is shown on the right.

P−1
RAS :=

M

∑
j=1

R̃T
j A−1

j R j, P−1
ORAS :=

M

∑
j=1

R̃T
j Ã−1

j R j.

The first one is the Restricted Additive Schwarz (RAS) preconditioner of [2], while

the second denotes the Optimized Restricted Additive Schwarz (ORAS) precondi-

tioner, recently introduced in [8], where the local matrices are modified to imple-

ment optimized Robin interface conditions. Note that with this process, the physical

overlap is reduced by two mesh layers. For example, a physical overlap of L = 3h

for RAS will correspond to an overlap of L̃ = h for ORAS. Here, we will use L to

denote exclusively the physical overlap corresponding to the RAS preconditioner as

a reference. In the present context, we will refer to the case of minimal overlap when

choosing the width of the overlapping region to be L = 3h. In the case of gener-

ous overlap, we keep the overlap width proportional to the subdomain size, L = CH

(where C is chosen in such a way that we always have L≥ 3h).

We often think of an optimized Schwarz method as an iteration-by-subdomain of

the form

Ã ju
n+1
j = f j +

M

∑
j=1

B̃ jkun
k , j = 1,2, . . . ,M, (1)

whereas in this paper we wish to utilize a stationary iterative method with precondi-

tioner P−1
ORAS

un+1 = un +
( M

∑
j=1

R̃T
j Ã−1

j R j

)
(f−Aun). (2)

It is shown in [8] that the iterations (1) and (2) are equivalent under two conditions,

one of which is an algebraic condition given by

B̃ jkRkR̃T
m = 0, for any j, and m 6= k. (3)

2.2 Interpretation of the Algebraic Condition

The algebraic condition (3) relates the discretization of the transmission conditions

with the overlapping (Ω j) and non-overlapping (Ω̃ j) domain decompositions. For
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example, in the case of a decomposition into strips and a 5-point stencil discretization

of the Laplacian, condition (3) requires that the overlap be at least three mesh layers

wide, i.e L≥ 3h.

Now, if the domain decomposition has cross-points, how do we interpret the

algebraic condition? To gain more insight, let us consider a simple example with

4 subdomains, labeled as in Fig. 1. In condition (3), let m = 1, k = 2 and j = 4.

Fig. 1 also shows a blow-up of the region near the cross-point. After having applied

the combination R2R̃T
1 to a vector, the only possible nonzero entries are located in

the shaded region. Then, condition (3) imposes that the application of B̃42 should not

depend on those nodes. Consider in particular the node (i, j) from Fig. 1: it lies on the

boundary of Ω4 and inside Ω̃2, hence the operator B̃42 needs to extract a transmission

condition there.

If we use a standard finite difference discretization of the normal derivative at

(i, j) which is second order accurate (O(h2)), we will need the “illegal node” on the

left of (i, j), hence violating the algebraic condition. In practice, we have observed

that this causes very slow convergence of iteration (2). To avoid this problem, we

have implemented instead a first-order accurate approximation to the normal deriva-

tive (using a one-sided finite difference), for which the algebraic condition is satis-

fied. In that case, modifying the local matrices Ai to Ãi also becomes a much simpler

task: only diagonal entries for the nodes lying on the boundary of Ωi need to be

modified.

2.3 Two-Level Preconditioners

To introduce a coarse space correction, we proceed as follows. The (non-overlapping)

domain decomposition induces a natural coarse mesh with nodes (iHx, jHy), where

Hx = 1/Mx, Hy = 1/My. We define P0 to be the bilinear interpolation from the coarse

to the fine mesh. This induces a coarse matrix using the relation A0 := PT
0 AP0. We

choose to apply the coarse space correction sequentially, after the parallel subdomain

solves. In the case of a stationary iterative method, preconditioned by a two-level Re-

stricted Additive Schwarz preconditioner (RAS2), we get the iterates

uk+ 1
2 = uk +

M

∑
j=1

R̃T
j A−1

j R j(b−Auk),

uk+1 = uk+ 1
2 +P0A−1

0 PT
0 (b−Auk+ 1

2 ).

The same coarse grid component can be added on top of ORAS to get a two-level

Optimized Restricted Additive Schwarz preconditioner (ORAS2). To obtain faster

convergence, we can apply a GMRES iteration on the corresponding preconditioned

linear systems instead.

In this paper, we will experiment only with the optimized one-sided Robin con-

ditions, using the asymptotic formula valid for small values of h (when L = Ch),

namely p∗ ≈ 2−1/3k
2/3
minL−1/3 (see [4]). In this formula, the minimum frequency in

the min-max problem is chosen to be kmin = π for the one-level preconditioner, and
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kmin = π/H for the two-level preconditioner, in which case p∗ = O(H−2/3). The idea

behind this choice is that the coarse grid correction should take care of the frequen-

cies below π/H.

3 Numerical Results

In the following results, we solve the preconditioned linear system in two ways. First,

we use a stationary iterative method, with right hand side f ≡ 0 and random initial

guess u(0), and check the convergence to 0 in the relative ℓ∞-norm, with tolerance

10−6. Alternatively, we solve the linear system using a preconditioned GMRES (not

restarted), with random right-hand side and zero initial guess, with tolerance 10−8

on the preconditioned residual.

Our parallel implementation is based on the PETSc library [1]. For the solution of

local and coarse problems (i.e. applications of A−1
j ), we precompute a full Cholesky

factorization.

3.1 Dependence on h

Let us first fix the number of subdomains to 4×4 = 16 subdomains, use a minimal

overlap L = 3h, and decrease the fine mesh size. We average the iteration numbers

over 25 different random vectors. Fig. 2 illustrates that we obtain the theoretical

asymptotic convergence; in fact, with GMRES acceleration, we seem to get a slightly

better convergence factor than the expected 1−O(h1/6).
More importantly, observe that when using the stationary iterative method, the

ORAS2 preconditioner (for which we have chosen kmin = π/H) takes more iterations

than the one-level ORAS preconditioner (for which kmin = π). This indicates that

the Robin parameter with kmin = π/H does not give the appropriate value; we will

confirm this in Section 3. On the other hand, this choice of parameter appears to yield

good convergence under GMRES acceleration.
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Fig. 2. Example with 16 subdomains, minimal overlap L = 3h, and decreasing h.
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3.2 Dependence on H, with Generous Overlap

We now fix the fine mesh size with n = 512, and increase the number of subdomains

while keeping the overlap proportional to H (as much as possible). The following

are results obtained for only one instance of a random vector. Table 1 contains the

number of iterations; with the GMRES method, the convergence of ORAS2 appears

to be independent of the number of subdomains as expected. Also, we can again

observe that the performance of ORAS2 with the choice kmin = π/H is not acceptable

for the stationary iterative method, when compared to the ORAS preconditioner.

Mx×My (L) 2×2 (9h) 4×4 (5h) 8×8 (3h) 2×2 (9h) 4×4 (5h) 8×8 (3h)

Stationary iterative method Preconditioned GMRES

RAS 306 739 > 2000 33 60 99

ORAS 27 54 136 16 22 32

RAS2 206 395 533 28 32 31

ORAS2 33 76 174 14 16 17

Table 1. Number of iterations with increasing the number of subdomains, while keeping the

overlap proportional to H.

3.3 A Weak Scalability Test

Suppose now that each processor handles a problem of fixed size, in this case

192×192, and let’s increase the number of processors. In other words, we keep H/h

constant, and always use a minimal overlap L = 3h. Table 2 clearly shows that the

ORAS2 preconditioner provides significant improvement on the convergence over

RAS2 (the difference would become even greater if we increase the ratio H/h).

Mx×My 2×2 4×4 6×6 8×8 9×9

no. of unknowns 147,456 589,824 1,327,104 2,359,296 2,985,984

Stationary iterative method

RAS2 439 1082 1528 1557 1798

ORAS2 325 316 323 332 324

Preconditioned GMRES

RAS2 40 47 48 48 48

ORAS2 18 20 21 21 21

Table 2. Number of iterations for a weak scaling experiment.

4 Best Robin Parameter

Does the asymptotic formula for the optimized Robin parameter give a good approx-

imation to the best parameter value for the ORAS2 preconditioner? We provide an
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answer to this question by minimizing the number of iterations taken by the pre-

conditioned iterative method, to obtain the best Robin parameter numerically. Fig. 3

show the results for a fixed problem with mesh size h = 1/64 and 4× 4 = 16 sub-

domains (H = 1/4). Fig. 4, on the other hand, plots the behavior of the best Robin

parameter as the number of subdomains is increased. We can make two interesting

remarks, which are in agreement with our previous experiments:

1. For the stationary iterative method, the best p for ORAS and ORAS2 are very

close, and the best convergence appears to be the same in both cases. The asymp-

totic formula for the optimized Robin parameter with kmin = π/H gives values

far from the best possible.

2. On the other hand, in the case of preconditioned GMRES, the optimized Robin

parameters with kmin = π and kmin = π/H respectively are very close to the best

parameter values, and the convergence of the two-level preconditioner offers

significant improvement over the one-level version.
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Fig. 3. Convergence for different values of the Robin parameter p, when h = 1/64 and H = 1/4

(16 subdomains).
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