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1 Introduction

The mathematical modelling of mechanical or biomechanical problems involving

large deformations or biological materials often leads to highly nonlinear and con-

strained minimization problems. For instance, the simulation of soft-tissues, as the

deformation of skin, gives rise to a highly non-linear PDE with constraints, which

constitutes the first order condition for a minimizer of the corresponding non-linear

energy functional. Besides of the pure deformation of the tissue, bones and mus-

cles have a restricting effect on the deformation of the considered material, leading

to additional constraints. Although PDEs are usually formulated in the context of

Sobolev spaces, their numerical solution is carried out using discretizations as, e.g.,

finite elements. Thus, in the present work we consider the following finite dimen-

sional constrained minimization problem:

u ∈B : J(u) = min! (M)

where B = {v ∈ Rn | ϕ ≤ v ≤ ϕ} and ϕ < ϕ ∈ Rn and the possibly nonconvex, but

differentiable, objective function J : Rn→ R. Here, the occurring inequalities are to

be understood pointwise. In the context of discretized PDEs, n corresponds to the

dimension of the finite element space and may therefore be very large.

The design of robust and efficient solution methods for problems like (M) is

a demanding task. Indeed, globalization strategies, such as trust-region methods

(cf., [1, 10]) or line-search algorithms, succeed in computing local minimizers, but

are based on the paradigm of Newton’s method. This means that a sequence of it-

erates is computed by solving linear, but potentially large, systems of equations.

The drawback is, that due to the utilization of a globalization strategy the com-

puted corrections generally need to be damped. Hence, for two reasons the conver-

gence of such an approach may slow down: often the linear systems of equations are

ill-conditioned and therefore iterative linear solvers tend to converge slowly. More-

over, even if the linear system can be solved efficiently, for instance by employing

a Krylov-space method in combination with a good preconditioner, globalization
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strategies tend to reduce the step-size depending on the non-linearity of the objective

function.

Therefore, solution strategies which are just based on Newton’s method can re-

main inefficient. In the context of quadratic minimization problems, linear multigrid

methods have turned out to be highly efficient since these algorithms are able to re-

solve also the low frequency contributions of the solution. Similarly, nonlinear multi-

grids (cf., [4, 6, 8]) aim at a better resolution of the low-frequency contributions of

non-linear problems.

Therefore, [3] introduced a class of non-linear multilevel algorithms, called

RMTR∞ (Recursive Multilevel Trust-Region method), to solve problems of the class

(M). In the present work, we will introduce a V-cycle variant of the RMTR algorithm

presented in [5, 6]. On each level of a given multilevel hierarchy, this algorithm em-

ploys a trust-region strategy to solve a constrained nonlinear minimization problem,

which arises from level dependent representations of J, ϕ , ϕ . An important new

feature of the RMTR∞ algorithm is the L2-projection of iterates to coarser levels

to generate good initial iterates - in contrast to employing the restriction operator

to transfer iterates to a coarse level. In fact, the new operator yields significantly

better rates of convergence of the RMTR algorithm (for a complete discussion see

[6]). To prove first-order convergence, we will state less restrictive assumptions on

the smoothness of J than used by [3]. Moreover, we illustrate the efficiency of the

RMTR∞ - algorithm by means of an example from the field of non-linear elasticity

in 3D.

2 The Multilevel Setting

The key concept of the RMTR∞ algorithm, which we will present in Section 3, is

to minimize on different levels arbitrary non-convex functions Hk approximating the

fine level objective function J. The minimization is carried out employing a trust-

region strategy which ensures convergence. Corrections computed on coarser levels

will be summed up and interpolated which provide possible corrections on the fine

level.

In particular, on each level, m1 pre-smoothing and m2 post-smooting trust-region

steps are computed yielding trust-region corrections. In between, a recursion is called

yielding a coarse level correction which is the interpolated difference between first

and last iterate on the next coarser level.

Therefore, we assume that a decomposition of the Rn into a sequence of nested

subspaces is given, such as Rn = Rn j ) Rn j−1 ) · · ·) Rn0 . The spaces are connected

to each other by full-rank linear interpolation, restriction and projection operators,

i.e., Ik : Rnk → Rnk+1 , Rk : Rnk → Rnk−1 and Pk : Rnk → Rnk−1 . Given these operators

and a current fine level iterate, uk+1 ∈ Rnk+1 , the nonlinear coarse level model (cf.,

[4, 6, 8]) is defined as

Hk(uk) = Jk(uk)+ 〈δgk,uk−Pk+1uk+1〉 (1)
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where we assume that a fixed sequence of nonlinear functions (Jk)k is given, repre-

senting J on the coarser levels. Here, the residual δgk ∈ Rnk is given by

δgk =

{
Rk+1∇Hk+1(uk+1)−∇Jk(Pk+1uk+1) if j > k ≥ 0

0 if k = j

In the context of constrained minimization, the fine level obstacles ϕ , ϕ have also

to be represented on coarser levels. In our implementation we employ the approach

introduced in [2]. Due to the definition of the coarse level obstacles, this ensures

that the projection of a fine level iterate and each resulting coarse level correction is

admissible.

3 Recursive Trust-Region Methods

The reliable minimization of nonconvex functions Hk depends crucially on the con-

trol of the “quality” of the iterates. Line-search algorithms, for instance, scale the

length of Newton corrections in order to force convergence to first-order critical

points. Similarly, in trust-region algorithms corrections are the solutions of con-

strained quadratic minimization problems. For a given iterate uk,i ∈ Rnk , where i

denotes the current iteration on level k, a correction sk,i is computed as an approxi-

mate solution of

sk,i ∈ Rnk : ψk,i(sk,i) = min!

w.r.t. ‖sk,i‖∞ ≤ ∆k,i and ϕ
k
≤ uk,i + sk,i ≤ ϕk

(2)

Here, ψk,i(s) = 〈∇Hk(uk,i),s〉+ 1
2
〈Bk,is,s〉 denotes the trust-region model with Bk,i,

a symmetric matrix, possibly approximating the Hessian ∇2Hk(uk,i) (if it exists) and

∆k,i is the trust-region radius.

On the coarse level, the reduction of Hk−1 starting at the initial iterate uk−1,0 =
Pkuk,m1

yields a final coarse level iterate uk−1. Therefore, the recursively computed

correction is sk,m1
= Ik−1(uk−1−Pkuk,m1

).

Trust-Region Algorithm, Input: uk,0,∆k,0,ϕk
,ϕk,Hk,m

do m times {
compute sk,i as an approximate solution of (2)

if (ρk,i(sk,i)≥ η1)

uk,i+1 = uk,i + sk,i

otherwise

uk,i+1 = uk,i

compute a new ∆k,i+1

}

Algorithm 6: Trust-Region Algorithm
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To ensure convergence, corrections are only added to the current iterate, if the

contraction rate ρk,i is sufficiently large. The contraction rate compares Hk(uk,i)−
Hk(uk,i + sk,i) to the reduction predicted by the underlying quadratic model ψk,i.

The value of ψk,i(sk,i) prognoses the reduction induced by corrections computed by

means of (2). The underlying model for recursively computed corrections sk,m1
is the

coarse level objective function Hk−1. Thus, we define

ρk,i(sk,i) =





Hk(uk,i)−Hk(uk,i+sk,i)

−ψk,i(sk,i)
if sk,i computed by (2)

Hk(uk,i)−Hk(uk,i+Ik−1sk−1)

Hk−1(Pkuk,i)−Hk−1(Pkuk,i+sk−1) otherwise

Now, a correction is then added to the current iterate if ρk,i(sk,i)≥η1 where η1 > 0. In

this case, the next trust-region radius ∆k,i+1 will be chosen larger than the current one,

i.e., γ3∆k,i ≥ ∆k,i+1 ≥ γ2∆k,i > ∆k,i with γ3 ≥ γ2 > 1. Otherwise, if ρk,i(sk,i) < η1, the

correction will be discarded and ∆k,i+1 chosen smaller than ∆k,i, i.e., ∆k,i > ∆k,i+1 ≥
γ1∆k,i, with 0 < γ1 < 1.

These four steps, computing sk,i by means of (2), computing ρk,i, applying sk,i

and the update of the trust-region radius are summarized in Algorithm 6.

Algorithm 7 on Page 141, introduces the RMTR∞ algorithm, which is a V-cycle

algorithm with an embedded trust-region solver.

3.1 Convergence to First-Order Critical Points

To show convergence of the RMTR∞ algorithm to first-order critical points, we state

the following assumptions on Hk, cf. [1].

(A1) For a given initial fine level iterate u j,0 ∈ Rn j , we assume that the level set L j =
{u∈Rn j |ϕ

j
≤ u≤ϕ j and J j(u)≤ J j(u j,0)} is compact. Moreover, for all initial

coarse level iterates uk,0 ∈ Rnk , we assume that the level sets Lk = {u ∈ Rnk |
ϕ

k
≤ u≤ ϕk and Hk(u)≤ Hk(uk,0)} are compact.

(A2) For all levels k ∈ {0, . . . , j}, we assume that Hk is continuously differentiable

on Lk. Moreover, we assume that there exists a constant cg > 0 such that for all

iterates uk,i ∈ Lk holds ‖∇Hk(uk,i)‖2 ≤ cg.

(A3) For all levels k∈ {0, . . . , j}, there exists a constant cB > 0 such that for all iterates

uk,i ∈ Lk and for all symmetric matrices Bk,i employed, the inequality ‖Bk,i‖2 ≤
cB is satisfied.

Moreover, computations on level k−1 are carried out only if

‖RkDk,m1
gk,m1
‖2 ≥ κg‖Dk,m1

gk,m1
‖2

εϕ ≥ ‖Dk,i‖∞ ≥ κϕ > 0
(AC)

where εϕ ,κϕ ,κg > 0, gk,i = ∇Hk(uk,i) and m1 indexes the recursion. Dk,i is a diagonal

matrix given by

(Dk,i)ll =

{
(ϕk−uk,i)l if (gk,i)l < 0

(uk,i−ϕ
k
)l if (gk,i)l ≥ 0



Solution of Non-Convex Constrained Minimization Problems 141

RMTR∞ Algorithm, Input: uk,0,∆k,0,ϕk
,ϕk,Hk

Pre-smoothing

call Algorithm 6 with uk,0,∆k,0,ϕk
,ϕk,Hk,m1

receive uk,m1
, ∆k,m1

Recursion

compute ϕ
k−1

,ϕk−1,Hk−1

call RMTR∞ with uk,m1
,∆k,m1

,ϕ
k−1

,ϕk−1,Hk−1,

receive sk−1 and compute sk,m1
= Ik−1sk−1

if (ρk,m1
(sk,m1

)≥ η1)

uk,m1+1 = uk,m1
+ sk,m1

otherwise

uk,m1+1 = uk,m1

compute a new ∆k,m1+1

Post-smoothing

call Algorithm 6 with uk,m1+1,∆k,m1+1,ϕk
,ϕk,Hk,m2

receive uk,m2
, ∆k,m2

if (k == j) goto Pre-smoothing

else return uk,m2
−uk,0

Algorithm 7: RMTR∞

In the remainder, we abbreviate ĝk,i = Dk,igk,i. Finally, we follow [1] and assume that

corrections computed in Algorithm 6 satisfy

ψk,i(sk,i) < β1ψk,i(s
C
k,i) (CC)

where β1 > 0 and sC
k,i ∈ Rnk solves

ψk,i(s
C
k,i) = min

t≥0: s=−tD2
k,igk,i

{ψk,i(s) : ‖s‖∞ ≤ ∆k,i

and ϕ
k
≤ uk,i + s≤ ϕk}

(3)

Now, we can now cite Lemma 3.1 from [1].

Lemma 1. Let (A1)–(A3) and (AC) hold. Then if sk,i in Algorithm 6 satisfies (CC),

we obtain

−ψk,i(sk,i)≥ c‖ĝk,i‖2 min{∆k,i,‖ĝk,i‖2} (4)

To obtain the next results, the number of applied V-cycles will be indexed by ν ,

so that uν
k,i, denotes the i-th iterate on Level k in Cycle ν .

Theorem 1. Assume that (A1)–(A3) and (AC) hold. Moreover, assume that in Algo-

rithm 7 at least m1 > 0 or m2 > 0 holds. We also assume that for each sk,i computed
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in Algorithm 6 (CC) holds. Then for each sequence of iterates (uν
j,i)ν ,i, we obtain

liminfν→∞ ‖ĝν
j,i‖2 = 0.

Proof. We will prove the result by contradiction, i.e., we assume that ∃ε > 0 and a

sequence (uν
j,i)ν ,i such that liminfν→∞ ‖ĝν

j,i‖2 ≥ ε .

In this case, one can show that ∆ ν
j,i→ 0. Namely, if ρν

j,i ≥ η1 holds only finitely

often, we obtain that ∆ ν
j,i is increased finitely often but decreased infinitely often. On

the other hand, for infinitely many iterations with ρν
j,i ≥ η1 we obtain

Hν
k (uν

k,i)−Hν
k (uν

k,i + sν
k,i)≥−η1ψν

k,i(s
ν
k,i)

We now exploit Lemma 1, (A1), and ‖ĝν
j,i‖2 ≥ ε and obtain for sufficiently large ν

that

Hν
k (uν

k,i)−Hν
k (uν

k,i + sν
k,i)≥ c∆ ν

k,i ≥ c‖sν
k,i‖∞→ 0

Next, we employ the mean value theorem, i.e., 〈sν
k,i,g

ν
k,i〉= Hk(u

ν
k,i + sν

k,i)−Hk(u
ν
k,i),

as well as (A2) and (A3) and obtain for each trust-region correction

|predν
k,i(s

ν
k,i)| |ρν

k,i−1|=
∣∣∣Hν

k (uν
k,i + sν

k,i)−Hν
k (uν

k,i)+ 〈sν
k,i,g

ν
k,i〉+

1

2
〈sν

k,i,B
ν
k,is

ν
k,i〉
∣∣∣

≤ 1

2
|〈sν

k,i,B
ν
k,is

ν
k,i〉|+ |〈sν

k,i,g
ν
k,i−gν

k (uν
k,i)〉|

≤ 1

2
cB(∆ ν

k,i)
2 +‖gν

k,i−gν
k (uν

k,i)‖2∆ ν
k,i

Due to the convergence of ∆ ν
k,i, and, hence, of (uν

k,i)ν ,i, and the continuity of gν
k,i, we

obtain ρν
k,i → 1 for i 6= m1. Hence, on each level, for sufficiently small ∆ ν

j,i, trust-

region corrections are successful and applied.

One can also show, that for sufficiently small ∆ ν
j,i recursively computed cor-

rections will be computed and applied: we find that there exists a c > 0 such that

∆ ν
k,i ≥ c∆ ν

j,m1
(cf., [6]). In turn, (AC) provides that there exists another constant such

that

Hν
k (uν

k,m1
)−Hν

k (uν
k,m1

+ sν
k,m1

)≥ c‖ĝν
k,m1
‖2 min{c∆ ν

j,m1
,‖ĝν

k,m1
‖2}

(cf., the proof of Lemma 4.4, [6]). Now, one can show, cf. Theorem 4.6, [6], that the

contraction rates for recursively computed corrections also tend to one, i.e., ρν
j,m1
→1.

Since ∆ ν
j,i → 0, we obtain (ρν

j,i)ν ,i → 1. But this contradicts ∆ ν
j,i → 0 and

liminfν→∞ ‖ĝν
j,i‖2→ 0 must hold. 2

Using exactly the same argumentation as used in Theorem 6.6 of [6], we obtain

convergence to first-order critical points, i.e., limν→∞ ‖ĝν
j,i‖2 = 0.

Theorem 2. Let assumptions (A1)–(A3), (AC) hold. Moreover, assume that al least

one pre- or post-smoothing step in Algorithm 7 will be performed and that (CC) holds

for each correction computed in Algorithm 6. Then, for each sequence of iterates

(uν
j,i)ν ,i we obtain limν→∞ ‖ĝν

j,i‖2 = 0.
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4 Numerical Example

In this section, we present an example from the field of non-linear elasticity com-

puted with the RMTR∞ algorithm which is implemented in OBSLIB++, cf. [7].

R. W. Ogden has introduced a material law for rubber-like materials (cf., [9]).

The associated stored energy function is highly non-linear due to a penalty term

which prevents the inversion of element volumes:

W (∇ϕ) = a · trE +b · (trE)2 + c · tr(E2)+d ·Γ (det(∇ϕ)) (5)

where ϕ = id +u. This function is a polyconvex stored energy function depending

on the Green - St. Venant strain tensor E(u), i.e., E(u) = 1
2
(∇uT + ∇u + ∇uT ∇u), a

penalty function Γ (x) =− ln(x) for x∈R+, and a =−d,b = λ−d,c = µ +d,d > 0.

Fig. 1 shows the results of the computation of a contact problem with parameters

λ = 34, µ = 136, and d = 100. In particular, a skewed pressure is applied on the

top side of the cube, which results in that the cube is pressed towards an obstacle.

Problem (M) with J(u) =
∫

Ω W (∇ϕ)dx was solved in a finite element framework

using both a fine level trust-region strategy and our RMTR∞ algorithm with m1 =
m2 = 2. Equation (2) was (approximately) solved using 10 projected cg-steps.

Fig. 1. Nonlinear Elastic Contact Problem 823,875 degrees of freedom. Left image: De-

formed mesh and von-Mises stress distribution. Right image: Comparison of (‖ĝν
j,0‖2)ν com-

puted by our RMTR∞ algorithm (black line) and by a trust-region strategy, performed only on

the finest grid (grey line).
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