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Summary. In this paper, we propose and study a Robin domain decomposition algorithm
to approximate a frictionless unilateral problem between two elastic bodies. Indeed this al-
gorithm combines, in the contact zone, the Dirichlet and Neumann boundaries conditions
(Robin boundary condition). The primary feature of this algorithm is the resolution on each
sub-domain of variational inequality.

1 Introduction

The numerical treatement of nonclassical contact problems leads to very large (due
to the large ratio of degrees of freedom concerned by contact conditions) and ill-
conditioned systems. Domain decomposition methods are good alternatives to over-
come these difficulties (see [2, 3, 13, 14]).

The aim of this paper is to give an idea of the proof for iterative schemes based on
domain decomposition techniques for a nonlinear problem modeling the frictionless
contact of linear elastic bodies. They were introduced in [11] and can be considered
as a generalization to variational inequality of the method described in [7, 15]. In [2,
3, 13, 14], the initial problem is transformed into a unilateral contact problem in the
one body and a prescribed displacement problem in the other one. We propose, in
this paper, another domain decomposition method in which we solve an unilateral
contact problem in each subdomain.

2 Weak Formulation of the Continuous Problem

Let us consider two bodies occupying, in the reference configuration, bounded do-
mains Q% a = 1,2, of the space R? with sufficiently smooth boundaries. The bound-
ary I'* = d Q% consists of three measurable, mutually disjoint parts I,*, I;*, I'* so
that ['* = ,# UT;* UT,%. The body Q" is fixed on the set I,. It is subject to surface
traction forces @% € (L*(I}*))? and the body forces are denoted by f* € (L?(2%))2.
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On the contact interface determined by I}' and I}, we consider the contact condi-
tion that is characterized by the non-penetration of the bodies and the transmission
of forces. To describe the non-penetration of the bodies, we shall use a pre-defined
bijective mapping x : I — I, which assigns to each x € I, some nearby point
x(x) € I2. Let v! (x) and v? () (x)) denote the displacement vectors at x and j (x), re-
spectively. Assuming the small displacements, the non-penetration condition reads
as follows:

vy (1) =i () =[] <gla)  with vy (x) = v () v(x), vi(6) =V (2 (x) - v(),

where g(x) = (x(x) —x) - v(x) is the initial gap and v(x) is the critical direction de-
fined by v(x) = (x(x) —x)/|lx (x) —x|| or, if x(x) = x, by the outer unit normal vector
to I'. We seek the displacement field u = (u',u?) (where the notation u* stands for
u|ge) and the stress tensor field 6 = (o (u'), o (u?)) satisfying the following equa-
tions and conditions (1)—(2) for ¢ = 1,2:

divo(u )—i—fa in Q%

SNt -eE=0 ol
=0 onI;% ey

§ 0,00 =0,[uy] <0, onI)?

v uv] = on [%.

The symbol div denotes the divergence operator of a tensor function and is defined

as 5
o
divo = (—U) .
8xj i
The summation convention of repeated indices is adopted. The elastic constitutive
law, is given by Hooke’s law for homogeneous and isotropic solids:

o(u*) =A%x)e(u”), )

where A%(x) = (afy, (x))1<ijkn<2 € (L= (2%))'6 is a fourth-order tensor satisfy-
ing the usual symmetry and ellipticity conditions in elasticity. The linearized strain
tensor £(u?%) is given by

l(Vua + (Vu®)T).

e(u) = 5

We will use the usual notations for the stress vector on the contact zone I.*:

oy = o;j(u”)vIvy,

o = o;j(u®) v —oyv.

In order to give the variational formulation corresponding to the problem (1)—(2), let
us introduce the following spaces

*=H* e (HY(Q*), v=00nL*}, V=VIxV2
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Now, we denote by K the following non-empty closed convex subset of V:
K={v=0')eV,[w]<0onI['}.

The variational formulation of problem (1)—(2) is

{Find u € K such that 3)
a(u,v—u) >L(v—u) WweKk,
where

a(u,v) = a'(u,v) +a*(u,v),

a®(u,v) = QaAa()C)S(Ma) -e(v*)dx, “4)
and

2
L(v) = Z/ f“'vader/ P* v%do.
a=172% e

There exists a unique solution u to problem (3) (see [5, 6, 12]).

3 The Domain Decomposition Algorithm

In order to split the problem (3) into two subproblems coupled through the contact
interface, we first introduce the following spaces and mappings:

V=% ev¥ W=0onI*}, a=1,2,
HAL) = {g € (LX), eV, y, = 9},
H'X() ={p e X(I1), v e H'(Q%), yv . = 9},

where 7 is the usual trace operator.
By P% : H'/2(I;*) — V%, we denote the extension operator from I% in Q¢
defined by : P*@ = v* ¢ € H'/2(I;*), where v* € V* satisfies

a*(v*,w%) =0 vw* eV
V=g onI*.

Remark 1. For the sake of simplicity, we shall write P'(v2) and P?(v},) instead of
P'(v2oyx.v) and P?(v' o x~1.v), respectively.

Let Sq : H'/>(I,%) — H~'/2(I*) be the following Steklov-Poincaré operator
(see [1]), for any ¢ € H'/?(I}%)

Sap = (0(u*)v*)v* =0y (u”) onI, ®)
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where u® solves the problem

div(o(u )) in Q%,
( v = on I}%,
=0 onI;%, (6)
GT(M =0 onI%,
u*v®=o¢ onI%.

Finally, with any @ € H'/2(I*), we associate the closed convex set
V@)= {v* e VEH*v* <ponT*}.

The two-body contact problem (3) is approximated by an iterative procedure involv-
ing a contact problem for each body 2% with a rigid foundation described by:

Given g% € H'/ 2( o), a@ = 1,2. For m > 1, we build the sequence of functions
(1) >0 € V! and ()50 € V2 by solving the following problems:

Step 1 {Find uiy € V(g% ),

7
a®(ul,w+P%(g% ) —ul) > L¥(w+P*(g% ) —u) YweV*O0). M
Find w,]neVl
a' (wy,,v) = —a? (uz, P2(vy)) + L2(P*(wy)) — @' (up,v) + L (v)  Wwe Ve,
Step 2: (8)
Find w2, € V2,
az(w2 V)= (um,Pl(vV))—Ll(Pl(v ))—Q—az(u,%“v)—Lz(v) Yy e V2,
1 _ 1 — 2 1
Step 3: g;ﬂ ( G)gm 1+9(W vl u,v?) on937 ©)
Em (lfe)gm71+e(wmv 7umv) on Gg.

Theorem 1. The fixed point of the algorithm (7)—(9) is the unique solution of the
problem (3).

Proof. We refer to [10] for the proof of this theorem.

4 Convergence

The convergence of iterative schemes (7)—(9) is proven by the application of Ba-
nach’s fixed point theorem to a suitable defined operator. In this following, we refor-
mulate (7)—(9) with operators representation.

In order to decouple the influence of exterior forces and boundary data, we define
U% o = 1,2, as solutions of the problems:

—div(oc(U%)) = f* in Q%
o(U*)v* = @} on I %,
U*=0 on ;%
c(U¥v*=0 onI*.

(10)
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Moreover, we introduce the operator Q% : H'/2([[%) — H'/2(I*) defined by
Q% | =1y, ey | € H'/2(I;*), where i#% is the solution of

—div(o(%))=0 in Q%
o(@¢)v*=0 onI%,
IZ’?L =0 ) on 1’1;057 (1 1)
or(i%)=0,0,(E%) <0 on I%
ﬁ%va Sg,‘f‘,,l on 1’;06’
o (#) (@ v — g5 1) =0 on L%
Then the solution of the problem (7) can be expressed by
uy =U*+P*(Q%5_,). 12)

Using the Steklov-Poincaré operator, the Step 2 of (7)—(9) can be written as follows:

W = 57 (0 (1) — 0y (). o)
Wom =S5 (Ov(uy,) — Ov (u7,))-
Then, we have
W{’,m:a_(ngiln—l—i_Sl_lSzg%n—l)’ (14)
W\Z/,m =b— (nglz‘f’l*l +S;1S1 gilnfl)’
where a = —S'$;U2 — U} and b= —S,'S,U} - U2.
From (14), we obtain a new expression of (9)
gn="(1-0)g), —6(20%% | +5,'510" g}, ) +6b1, 15)
gn=(1-0)g2 —6(20"g), | +S5"'920%¢% |)+0ai,

with a; = —S;'SU2 —2U] and by = —S; '$,U} —2U2.
Let us introduce, the operator T defined by
T:(H'L*)? — H (1))

(w%—u%,) _ <—2Q2 2—55151Q1g1+b1) (16)

1 1 72Q1g17S17152Q2g2 +a

g—T@)={,1_,
\% v

and Ty

To: (H'A(%)? — (HA(I%))? (17)
g—To(g)=(1-0)g+0T(g).

Using the definition of the operators T and Ty, (15) can be expressed by

gm:TG(gm—l):(1_9>gm—1+6T(gm—1)- (18)
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Theorem 2. The operator T is a Lipschitz operator.

Theorem 3. There exists 6y €]0,1[ such that for 0 in )0, 6|, the operator Ty is a
contraction in a suitable norm equivalent to the H'/>([,%)-norm.

Remark 2. To prove Theorems 2 and 3, the properties of the operators Sg, Q% and
P are very important. Indeed Sy, : H'/2(I,%*) — H~'/2(I'*) is bounded, bijective,
self-adjoint and coercive. The operator Q% : H'/?(I*) — H'/?([}*) is a Lipschitz
operator. S Q% : H'/>(I;%*) — H~'/2(I}*) is Lipschitz and monotone. The exten-
sion operator P% : H'/2(I;*) — P*(H'/?(I;*)) is continuous and bijective (see [9]).

5 Numerical Experiments

In this section, we describe some numerical results obtained with algorithm (7)—(9)
for various values of the parameter 6 and various problem sizes. Our implementation
uses a recently developed algorithm of quadratic programming with proportioning
and gradient projections [4]. The numerical implementations are performed in Sci-
lab 2.7 on a Pentium 4, 1.80 GHz workstation with 256 MB RAM. We set rol = 108
and we stop the iterations, if their number is greater than eight hundred. For all
experiments to be described below, the stopping criterion of algorithm (7)—(9) is

g = &mall  llgm —gmall _
I > <tol,
[P (Pl
where || - || denotes the Euclidean norm. The precision in the inner iterations are

adaptively adjusted by the precision achieved in the outer loop.
Let us consider the plane elastic bodies

Q'=(0,3)x(1,2) and Q2=(0,3)x(0,1)

made of an isotropic, homogeneous material characterized by Young’s modulus
Eg = 2.1 10'! and Poisson’s ratio v, = 0.277. The decomposition of I'! and T2
read as:

fy

L, {0} x(1,2), 1—;12(0,3)><{1}, QIZFI\EtIUI;Iv
2={0} x(0,1), I>=(0,3)x{1}, I?=I>\I2UI2.

c

The volume forces vanish for both bodies. The non-vanishing surface traction
¢V = (¢1,6}) and 2 = (£3,63) on I! and on I'}2, respectively:

01(s,2) =0, £i(s,2) =—100, s€(0,3),
01(3,5) =0, 01(3,s)=0, s€(1,2),
(5,0)=0, (3(s,0) =0, s €(0,3),
3(3,5) =0, (3(3,5)=0, s€(0,1).
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Fig. 1. Setting of the problem.

Fig. 2 illustrates the convergence of the algorithm (7)—(9) for different values of
the relaxation parameter 6 and various problem sizes with n the number of d.o.f.
in Q' UQ? and m the number of d.o.f. on I;%. The results obtained show that the
convergence of algorithm (7)—(9) does not depend on the mesh size 1. Moreover, this
algorithm (7)-9 converges for all 8 €]0, 1].
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Fig. 2. Convergence rate of the algorithm.
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