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Summary. In this paper, we propose and study a Robin domain decomposition algorithm

to approximate a frictionless unilateral problem between two elastic bodies. Indeed this al-

gorithm combines, in the contact zone, the Dirichlet and Neumann boundaries conditions

(Robin boundary condition). The primary feature of this algorithm is the resolution on each

sub-domain of variational inequality.

1 Introduction

The numerical treatement of nonclassical contact problems leads to very large (due

to the large ratio of degrees of freedom concerned by contact conditions) and ill-

conditioned systems. Domain decomposition methods are good alternatives to over-

come these difficulties (see [2, 3, 13, 14]).

The aim of this paper is to give an idea of the proof for iterative schemes based on

domain decomposition techniques for a nonlinear problem modeling the frictionless

contact of linear elastic bodies. They were introduced in [11] and can be considered

as a generalization to variational inequality of the method described in [7, 15]. In [2,

3, 13, 14], the initial problem is transformed into a unilateral contact problem in the

one body and a prescribed displacement problem in the other one. We propose, in

this paper, another domain decomposition method in which we solve an unilateral

contact problem in each subdomain.

2 Weak Formulation of the Continuous Problem

Let us consider two bodies occupying, in the reference configuration, bounded do-

mains Ω α , α = 1,2, of the space R2 with sufficiently smooth boundaries. The bound-

ary Γ α = ∂Ω α consists of three measurable, mutually disjoint parts Γ α
u , Γ α

ℓ , Γ α
c so

that Γ α = Γ α
u ∪Γ α

ℓ ∪Γ α
c . The body Ω

α
is fixed on the set Γ α

u . It is subject to surface

traction forces Φα ∈ (L2(Γ α
ℓ ))2 and the body forces are denoted by f α ∈ (L2(Ω α))2.
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On the contact interface determined by Γ 1
c and Γ 2

c , we consider the contact condi-

tion that is characterized by the non-penetration of the bodies and the transmission

of forces. To describe the non-penetration of the bodies, we shall use a pre-defined

bijective mapping χ : Γ 1
c −→ Γ 2

c , which assigns to each x ∈ Γ 1
c some nearby point

χ(x)∈Γ 2
c . Let v1(x) and v2(χ(x)) denote the displacement vectors at x and χ(x), re-

spectively. Assuming the small displacements, the non-penetration condition reads

as follows:

v1
ν(x)− v2

ν(x) = [vν ]≤ g(x) with v1
ν(x)≡ v1(x) ·ν(x), v2

ν(x)≡ v2(χ(x)) ·ν(x),

where g(x) = (χ(x)− x) ·ν(x) is the initial gap and ν(x) is the critical direction de-

fined by ν(x) = (χ(x)−x)/‖χ(x)−x‖ or, if χ(x) = x, by the outer unit normal vector

to Γ 1
c . We seek the displacement field u = (u1,u2) (where the notation uα stands for

u|Ω α ) and the stress tensor field σ = (σ(u1),σ(u2)) satisfying the following equa-

tions and conditions (1)–(2) for α = 1,2:





divσ(uα)+ f α = 0 in Ω α ,

σ(uα)nα −Φα
ℓ = 0 on Γ α

ℓ ,

uα = 0 on Γ α
u ,

σν ≤ 0,σT = 0, [uν ]≤ 0, on Γ α
c ,

σν · [uν ] = 0 on Γ α
c .

(1)

The symbol div denotes the divergence operator of a tensor function and is defined

as

divσ =
(∂σi j

∂x j

)
i
.

The summation convention of repeated indices is adopted. The elastic constitutive

law, is given by Hooke’s law for homogeneous and isotropic solids:

σ(uα) = Aα(x)ε(uα), (2)

where Aα(x) = (aα
i jkh(x))1≤i, j,k,h≤2 ∈ (L∞(Ω α))16 is a fourth-order tensor satisfy-

ing the usual symmetry and ellipticity conditions in elasticity. The linearized strain

tensor ε(uα) is given by

ε(uα) =
1

2
(∇uα +(∇uα)T ).

We will use the usual notations for the stress vector on the contact zone Γ α
c :

σα
ν = σi j(u

α)να
i να

j , σα
T = σi j(u

α)να
j −σα

ν να
i .

In order to give the variational formulation corresponding to the problem (1)–(2), let

us introduce the following spaces

V α = {vα ∈ (H1(Ω α))2, v = 0 on Γ α
u }, V = V 1×V 2.
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Now, we denote by K the following non-empty closed convex subset of V :

K = {v = (v1,v2) ∈V, [vν ]≤ 0 on Γ 1
c }.

The variational formulation of problem (1)–(2) is

{
Find u ∈ K such that

a(u,v−u)≥ L(v−u) ∀v ∈ K,
(3)

where

a(u,v) = a1(u,v)+a2(u,v),

aα(u,v) =
∫

Ω α
Aα(x)ε(uα) · ε(vα)dx, (4)

and

L(v) =
2

∑
α=1

∫

Ω α
f α · vα dx+

∫

Γ α
ℓ

Φα · vα dσ .

There exists a unique solution u to problem (3) (see [5, 6, 12]).

3 The Domain Decomposition Algorithm

In order to split the problem (3) into two subproblems coupled through the contact

interface, we first introduce the following spaces and mappings:

V α
0 = {vα ∈V α , vα

ν = 0 on Γ α
c }, α = 1,2,

H1/2(Γc) = {ϕ ∈ (L2(Γc))
2, ∃v ∈V α , γv|Γc

= ϕ},
H1/2(Γc) = {ϕ ∈ L2(Γc), ∃v ∈ H1(Ω α), γv|Γc

= ϕ},

where γ is the usual trace operator.

By Pα : H1/2(Γ α
c ) −→ V α , we denote the extension operator from Γ α

c in Ω α

defined by : Pα ϕ = vα ,ϕ ∈ H1/2(Γ α
c ), where vα ∈V α satisfies

{
aα(vα ,wα) = 0 ∀wα ∈V α

0 ;

vα
ν = ϕ on Γ α

c .

Remark 1. For the sake of simplicity, we shall write P1(v2
ν) and P2(v1

ν) instead of

P1(v2 ◦χ.ν) and P2(v1 ◦χ−1.ν), respectively.

Let Sα : H1/2(Γ α
c ) −→ H−1/2(Γ α

c ) be the following Steklov-Poincaré operator

(see [1]), for any ϕ ∈ H1/2(Γ α
c )

Sα ϕ = (σ(uα)να)να = σν(uα) on Γ α
c , (5)



148 Mohamed Ipopa and Taoufik Sassi

where uα solves the problem




div(σ(uα)) = 0 in Ω α ,

σ(uα)να = 0 on Γ α
ℓ ,

uα = 0 on Γ α
u ,

σT (uα) = 0 on Γ α
c ,

uα να = ϕ on Γ α
c .

(6)

Finally, with any ϕ ∈ H1/2(Γ α
c ), we associate the closed convex set

V α
− (ϕ) = {vα ∈V α/vα να ≤ ϕ on Γ α

c }.

The two-body contact problem (3) is approximated by an iterative procedure involv-

ing a contact problem for each body Ω α with a rigid foundation described by:

Given gα
0 ∈ H1/2(Γc), α = 1,2. For m ≥ 1, we build the sequence of functions

(u1
m)m≥0 ∈V 1 and (u2

m)m≥0 ∈V 2 by solving the following problems:

Step 1:

{
Find uα

m ∈V α
− (gα

m−1),

aα
(
uα

m,w+Pα (gα
m−1)−uα

m

)
≥ Lα

(
w+Pα (gα

m−1)−uα
m

)
∀w ∈V α

− (0).
(7)

Step 2:





Find w1
m ∈V 1,

a1(w1
m,v) =−a2(u2

m,P2(vν ))+L2(P2(vν ))−a1(u1
m,v)+L1(v) ∀v ∈V 1.

Find w2
m ∈V 2,

a2(w2
m,v) = a1(u1

m,P1(vν ))−L1(P1(vν ))+a2(u2
m,v)−L2(v) ∀v ∈V 2.

(8)

Step 3:

{
g1

m = (1−θ)g1
m−1 +θ(w2

mν2−u2
mν2) on G1

c ,

g2
m = (1−θ)g2

m−1 +θ(w1
mν1−u1

mν1) on G2
c .

(9)

Theorem 1. The fixed point of the algorithm (7)–(9) is the unique solution of the

problem (3).

Proof. We refer to [10] for the proof of this theorem.

4 Convergence

The convergence of iterative schemes (7)–(9) is proven by the application of Ba-

nach’s fixed point theorem to a suitable defined operator. In this following, we refor-

mulate (7)–(9) with operators representation.

In order to decouple the influence of exterior forces and boundary data, we define

Uα , α = 1,2, as solutions of the problems:





−div(σ(Uα)) = f α in Ω α ,

σ(Uα)να = Φα
ℓ on Γ α

ℓ ,

Uα = 0 on Γ α
u ,

σ(Uα)να = 0 on Γ α
c .

(10)
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Moreover, we introduce the operator Qα : H1/2(Γ α
c ) −→ H1/2(Γ α

c ) defined by

Qα gα
m−1 = ũα

ν ,m, ∀gα
m−1 ∈ H1/2(Γ α

c ), where ũα
m is the solution of





−div(σ(ũα
m)) = 0 in Ω α ,

σ(ũα
m)να = 0 on Γ α

ℓ ,

ũα
m = 0 on Γ α

u ,

σT (ũα
m) = 0,σν(ũα

m)≤ 0 on Γ α
c ,

ũα
mνα ≤ gα

m−1 on Γ α
c ,

σν(ũα
m)(ũα

mνα −gα
m−1) = 0 on Γ α

c .

(11)

Then the solution of the problem (7) can be expressed by

uα
m = Uα +Pα(Qα gα

m−1). (12)

Using the Steklov-Poincaré operator, the Step 2 of (7)–(9) can be written as follows:

{
w1

ν ,m = S−1
1 (σν(u2

m)−σν(u1
m)),

w2
ν ,m = S−1

2 (σν(u1
m)−σν(u2

m)).
(13)

Then, we have {
w1

ν ,m = a− (Q1 g1
m−1 +S−1

1 S2 g2
m−1),

w2
ν ,m = b− (Q2 g2

m−1 +S−1
2 S1 g1

m−1),
(14)

where a =−S−1
1 S2U2

ν −U1
ν and b =−S−1

2 S1U1
ν −U2

ν .

From (14), we obtain a new expression of (9)

{
g1

m = (1−θ)g1
m−1−θ(2Q2 g2

m−1 +S−1
2 S1Q1 g1

m−1)+θb1,

g2
m = (1−θ)g2

m−1−θ(2Q1 g1
m−1 +S−1

1 S2Q2 g2
m−1)+θa1,

(15)

with a1 =−S−1
1 S2U2

ν −2U1
ν and b1 =−S−1

2 S1U1
ν −2U2

ν .

Let us introduce, the operator T defined by

T : (H1/2(Γ α
c ))2 −→ (H1/2(Γ α

c ))2

g 7−→ T (g) =

(
w2

ν −u2
ν

w1
ν −u1

ν

)
=

(
−2Q2 g2−S−1

2 S1Q1 g1 +b1

−2Q1 g1−S−1
1 S2Q2 g2 +a1

)
(16)

and Tθ

Tθ : (H1/2(Γ α
c ))2 −→ (H1/2(Γ α

c ))2

g 7−→ Tθ (g) = (1−θ)g+θT (g).
(17)

Using the definition of the operators T and Tθ , (15) can be expressed by

gm = Tθ (gm−1) = (1−θ)gm−1 +θT (gm−1). (18)
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Theorem 2. The operator T is a Lipschitz operator.

Theorem 3. There exists θ0 ∈]0,1[ such that for θ in ]0,θ0[, the operator Tθ is a

contraction in a suitable norm equivalent to the H1/2(Γ α
c )-norm.

Remark 2. To prove Theorems 2 and 3, the properties of the operators Sα , Qα and

Pα are very important. Indeed Sα : H1/2(Γ α
c )−→ H−1/2(Γ α

c ) is bounded, bijective,

self-adjoint and coercive. The operator Qα : H1/2(Γ α
c )−→ H1/2(Γ α

c ) is a Lipschitz

operator. Sα Qα : H1/2(Γ α
c ) −→ H−1/2(Γ α

c ) is Lipschitz and monotone. The exten-

sion operator Pα : H1/2(Γ α
c )−→Pα(H1/2(Γ α

c )) is continuous and bijective (see [9]).

5 Numerical Experiments

In this section, we describe some numerical results obtained with algorithm (7)–(9)

for various values of the parameter θ and various problem sizes. Our implementation

uses a recently developed algorithm of quadratic programming with proportioning

and gradient projections [4]. The numerical implementations are performed in Sci-

lab 2.7 on a Pentium 4, 1.80 GHz workstation with 256 MB RAM. We set tol = 10−8

and we stop the iterations, if their number is greater than eight hundred. For all

experiments to be described below, the stopping criterion of algorithm (7)–(9) is

‖g1
m−g1

m−1‖
‖g1

m‖
+
‖g2

m−g2
m−1‖

‖g2
m‖

≤ tol,

where ‖ · ‖ denotes the Euclidean norm. The precision in the inner iterations are

adaptively adjusted by the precision achieved in the outer loop.

Let us consider the plane elastic bodies

Ω 1 = (0,3)× (1,2) and Ω 2 = (0,3)× (0,1)

made of an isotropic, homogeneous material characterized by Young’s modulus

Eα = 2.1 1011 and Poisson’s ratio να = 0.277. The decomposition of Γ 1 and Γ 2

read as:

Γ 1
u = {0}× (1,2), Γ 1

c = (0,3)×{1}, Γ 1
ℓ = Γ 1 \Γ 1

u ∪Γ 1
c ,

Γ 2
u = {0}× (0,1), Γ 2

c = (0,3)×{1}, Γ 2
ℓ = Γ 2 \Γ 2

u ∪Γ 2
c .

The volume forces vanish for both bodies. The non-vanishing surface traction

ℓ1 = (ℓ1
1, ℓ

1
2) and ℓ2 = (ℓ2

1, ℓ
2
2) on Γ 1

ℓ and on Γ 2
ℓ , respectively:

ℓ1
1(s,2) = 0, ℓ1

2(s,2) =−100, s ∈ (0,3),

ℓ1
1(3,s) = 0, ℓ1

2(3,s) = 0, s ∈ (1,2),

ℓ2
1(s,0) = 0, ℓ2

2(s,0) = 0, s ∈ (0,3),

ℓ2
1(3,s) = 0, ℓ2

2(3,s) = 0, s ∈ (0,1).
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<--

<-- Γ 1
u

Γ 2
u

Ω1

Γc

Ω2

ℓ1
2(s,2)

Γ 2
ℓ

Γ 1
ℓ

Fig. 1. Setting of the problem.

Fig. 2 illustrates the convergence of the algorithm (7)–(9) for different values of

the relaxation parameter θ and various problem sizes with n the number of d.o.f.

in Ω 1 ∪Ω 2 and m the number of d.o.f. on Γ α
c . The results obtained show that the

convergence of algorithm (7)–(9) does not depend on the mesh size h. Moreover, this

algorithm (7)–9 converges for all θ ∈]0,1[.
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Fig. 2. Convergence rate of the algorithm.
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