
On Preconditioners for Generalized Saddle Point

Problems with an Indefinite Block

Piotr Krzyżanowski
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1 Introduction

In many applications one needs to solve a discrete system of linear equations with a

symmetric block matrix

M

(
u

p

)
≡
(

A BT

B 0

)(
u

p

)
=

(
f

g,

)
(1)

where the block A = AT is not necessarily positive definite and may even be singular.

Such situation occurs, for example, after suitable finite element discretization of the

generalized Stokes problem, cf. [5],

−∆u−ω u+∇p = f , (2)

div u = 0, (3)

when for large enough ω one cannot preserve the ellipticity of −∆ −ω . Another

example is the time-harmonic Maxwell equation, see [7],

∇×∇×u−ω u+∇p = f , (4)

div u = 0, (5)

where large enough ω again results in an indefinite A. Although the whole system

matrix (1) remains invertible when ω = 0, the matrix A which then corresponds to

the discrete curl-curl operator, has a large kernel.

In these examples, the discrete problem matrix (1) is ill conditioned with respect

to the mesh parameter h. Our aim in this paper is to analyze block preconditioners

for such systems, for which the preconditioned conjugate residuals (PCR) method,

see [8], converges independently of h.

Block preconditioning allows for an efficient reuse of existing methods of pre-

conditioning problems of simpler structure, such as symmetric positive definite sys-

tems. Actually, block diagonal or triangular preconditioners decompose in a natural
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way the large system (1) into several smaller and simpler problems. Since domain de-

composition based preconditioners are very well developed for symmetric and pos-

itive definite problems, and high quality software, such as PETSc, see [1] contains

implementations of very robust methods, the use of block preconditioners may be a

reasonable solution method instead of more involved methods.

We present an analysis of some block preconditioning algorithms within a gen-

eral framework, essentially assuming only that equation (1) is well posed and that

M is symmetric. Our analysis is valid for inexact block solvers and shows that a

successful preconditioner can be based on preconditioners for symmetric positive

definite sub-problems. Let us note that probably the first observation that (diago-

nal) preconditioners based on positive definite blocks are applicable even in the case

when A is not necessarily positive definite, was made in [9]. Here we generalize this

observation to various kinds of block preconditioners.

2 General Assumptions

Let V̄ ,W̄ be real Hilbert spaces with scalar products denoted by ((·, ·)) and (·, ·),
respectively. The norms in these spaces, induced by the inner products, will be de-

noted by ‖ · ‖ and | · |. We consider a family of finite dimensional subspaces indexed

by the parameter h ∈ (0,1): Vh ⊂ V̄ , Wh ⊂ W̄ . If Vh,Wh come from finite element

approximations, the dimension of these subspaces increases for decreasing h.

Following [4], let us introduce three continuous bilinear forms: a : V̄ × V̄ → R,

b : V̄ ×W̄ → R, c : W̄ ×W̄ → R. We assume that a(·, ·) is symmetric and there exists

a constant α , independent of h, such that

∃α > 0 ∀h ∈ (0,1) inf
v∈V 0

h
,v 6=0

sup
u∈V 0

h
,u 6=0

a(u,v)

‖u‖‖v‖ ≥ α, (6)

where V 0
h = {v ∈ Vh : ∀q ∈Wh b(v,q) = 0}. We shall also assume that the finite

dimensional spaces Vh and Wh satisfy the uniform LBB condition,

∃β > 0 ∀h ∈ (0,1) ∀p ∈Wh sup
v∈Vh,v 6=0

b(v, p)

‖v‖ ≥ β |p|. (7)

Remark 1. Condition (6), when related to our motivating problems, generalized

Stokes (2)–(3) or time-harmonic Maxwell equations (4)–(5), imposes some condi-

tions on the values of ω , e.g., in the latter case,
√

ω has to be distinct from any

Maxwell eigenvalue of the discrete problem.

From now on, we drop the subscript h to simplify the notation. In what follows

we consider preconditioners for a family of finite dimensional problems:

Problem 1. Find (u, p) ∈V ×W such that

M

(
u

p

)
≡
(

A B∗

B 0

)(
u

p

)
=

(
F

G

)
. (8)
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The operators in (8) are defined by:

A : V →V, ((Au,v)) = a(u,v) ∀u,v ∈V,

B : V → W, (Bu, p) = b(u, p) ∀u ∈V, p ∈W,

while the right hand side components F ∈ V , G ∈W satisfy ((F,v)) ≡ 〈〈 f ,v〉〉 and

(G,w) ≡ 〈g,w〉, where f ,g are given linear continuous functionals on V̄ , W̄ , and

〈〈·, ·〉〉, 〈·, ·〉 denote the duality pairing in V̄ , W̄ , respectively. B∗ denotes the formal

adjoint operator to B, i.e. (Bu, p) = ((u,B∗p)) for all u ∈V , p ∈W . Let us recall the

key theorem which we shall use throughout the paper. This is the classical result on

the stability of (8):

Lemma 1. [4] Under the above assumptions, there exits a unique pair (u, p)∈V×W

which solves (8). Moreover,

‖u‖+ |p|. ‖F‖+ |G|. (9)

Here, and it what follows, x . y means that there exists a positive constant C,

independent of x, y and h, such that x ≤ C y. Similarly, x ≃ y will denote that both

x . y and y . x hold.

We introduce two more operators, A0 : V → V and J0 : W → W . We assume

that they are self-adjoint, their inverses are easy to apply, and that they define inner

products spectrally equivalent to ((·, ·)) and (·, ·), respectively:

((A0u,u))≃ ((u,u)) ∀u ∈V, (10)

(J0 p, p)≃ (p, p) ∀p ∈W. (11)

In other words, we shall always assume that A0 and J0 define good precondition-

ers for the Grammian matrices for the chosen bases in V and W , respectively. For

example, the A0 preconditioner may be constructed using very efficient domain de-

composition or multigrid techniques; for J0, in some cases such as the generalized

Stokes problem, one can also apply a very cheap diagonal scaling instead of domain

decomposition.

With any X-elliptic, selfadjoint operator G we may associate an energy norm of

x∈X , ‖ f‖G = ((G f , f ))1/2. From (10)–(11) it directly follows that the energy norms

defined by A0, J0 and their inverses are equivalent, with constants independent of h,

to the original norms in appropriate spaces:

Lemma 2. For any f ∈V and g ∈W,

‖ f‖A0
≃ ‖ f‖ ≃ ‖ f‖

A−1
0

, (12)

|g|J0
≃ |g| ≃ |g|

J−1
0

. (13)

Lemma 3. The norms of A, B, A0, J0, M in appropriate spaces are bounded inde-

pendently of h,

‖A‖V→V , ‖B‖V→W , ‖A0‖V→V , ‖J0‖W→W , ‖M‖V×W→V×W . 1.

Moreover,

‖A−1
0 ‖V→V , ‖J−1

0 ‖W→W , ‖M−1‖V×W→V×W . 1.
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In the rest of the paper, we shall analyze preconditioners for the Preconditioned

Conjugate Residual method (PCR), which is known to be applicable to indefinite

symmetric systems, provided the preconditioner is a symmetric, positive definite op-

erator. Other methods may also be applicable, such as QMR, BiCGStab, GMRES,

etc. When applied to M with a preconditioner P, its convergence rate, according to

[8], depends on the quantity κ(P−1M) = ρ(P−1M)ρ(M−1P), where ρ denotes the

spectral radius of a matrix.

3 Block Diagonal Preconditioner

In the section, we recall a result regarding the block diagonal preconditioner,

MD =

(
A0 0

0 J0

)
.

This preconditioner has been thoroughly analyzed for symmetric saddle point prob-

lems, assuming either V -ellipticity, see [11], or only V 0-ellipticity of A, see e.g. [9,

Sec. 3.2]. These results directly apply to the more general case, when A only satisfies

(6). Actually, the only non-trivial property of M which is required in the proof is the

stability result of Lemma 1.

Lemma 4 ([9]). The preconditioned operator PD = M−1
D M satisfies

κ(PD) . 1.

4 Block Upper Triangular Preconditioner

Another preconditioner for the operator M is based on a block upper triangular ma-

trix

MU =

(
A0 B∗

0 J0

)
. (14)

The preconditioned operator PU = M−1
U M is equal to

PU =

(
A0

J0

)−1 (
A−B∗J−1

0 B B∗

B 0

)
, (15)

so the triangular preconditioner acts as the diagonal preconditioner MD applied to an

augmented matrix

M̃U =

(
A−B∗J−1

0 B B∗

B 0

)
.

Remark 2. Usually, block systems (1) are augmented by adding a non-negative ma-

trix to A, see e.g. [2] or [6]. Klawonn’s preconditioner also results in a positively

augmented matrix, cf. [10]. Here, we end up with a negatively augmented matrix,

that is, we subtract a non-negative definite matrix from A. Numerical results pro-

vided in the final section, as well as some theoretical considerations, indicate that

this approach improves the overall convergence of the iterative solver.
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Due to the decomposition (15), it is still possible to use a PCR method to solve the

preconditioned problem. The analysis of the upper triangular preconditioner reduces

to the previous case of block diagonal preconditioning.

Lemma 5. Lemma 3 holds for the augmented matrix M̃U .

Applying the estimates from the block-diagonal case and using this lemma, we con-

clude that

Theorem 1. κ(PU ) . 1.

5 Lower Block Triangular Preconditioner

It is also possible, with some additional assumptions, to analyze, in the same frame-

work, the lower triangular block preconditioner

ML =

(
A0 0

B J0

)
. (16)

The preconditioned operator PL = M−1
L M then equals

PL =

(
A0−A

J0

)−1 (
A−AA−1

0 A (A0−A)A−1
0 B∗

BA−1
0 (A0−A) −BA−1

0 B∗

)
. (17)

so the upper triangular preconditioner acts as a diagonal preconditioner

MDL =

(
A0−A

J0

)

applied to some symmetric matrix

M̃L =

(
A−AA−1

0 A (A0−A)A−1
0 B∗

BA−1
0 (A0−A) −BA−1

0 B∗

)
.

See [3] for an analysis of the case when A is positive definite. In order to use the

PCR framework, which requires the preconditioner to be positive definite, we have

to assume some scaling of A0; see [3].

Theorem 2. If there exists a constant m > 0, independent of h, such that

(((A0−A)u,u)) > m((u,u)) ∀u ∈V, (18)

then

κ(PL) . 1.
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6 Numerical Experiments

The numerical experiments were performed using a MATLAB implementation of

a Taylor-Hood finite element discretization of the generalized Stokes problem (2)–

(3) on a unit square, with homogeneous boundary condition for the velocity. The

discretization resulted in a matrix A = D−ωM, where D is the discrete Laplacian

and M corresponds to the velocity mass matrix. We conducted two kinds of tests.

First, we experimented with A0 = D + M and J0 = M (the pressure mass matrix),

calling this preconditioner as the “exact” preconditioner. Then, in order to show a

more realistic application, we used “inexact” preconditioners with A−1
0 defined as

the incomplete Cholesky solve of D+M, with drop tolerance 10−3.

In both cases, we investigated the convergence rate of the block diagonal, upper

triangular and lower triangular preconditioners discussed above, for several values of

ω and varying mesh size h. The stopping criterion was the reduction of the residual

norm by a factor of 106. To provide sufficient scaling for the A0 block in the lower

triangular preconditioner, we have set A0 = 2D + M in ML in the “exact” case. For

comparison with the upper triangular solver, we also included a diagonally precon-

ditioned positively augmented system, see Remark 2,

Paug = P−1
D ·
(

A+BT J−1
0 B BT

B 0

)
.
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Fig. 1. A comparison of convergence histories of the PCR using four preconditioners for

discretized generalized Stokes problem with ω = 10. Exact A0 solver (see details in the text).
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Table 1. Iteration counts for various parameters and preconditioners; left panel: “exact” case,

right panel: “inexact” case.

ω h PD PU Paug PL PD PU Paug PL

10 1/4 39 32 39 33 56 44 57 47

10 1/64 45 38 50 43 116 113 130 101

100 1/4 73 66 86 84 103 92 126 109

100 1/64 133 114 150 135 144 128 171 119

As expected, good preconditioners such as those used in the “exact” case, led to

iteration counts virtually independent of h. On the other hand, the number of itera-

tions seems to grow sublinearly with the increase of ω , cf. Table 1.

7 Conclusions

Block preconditioning using optimal preconditioners for simple symmetric positive

definite operators leads to optimal results with respect to the mesh size h under

very mild assumptions on the A block in (1). There is a connection between the

(left-) upper triangular preconditioning and the augmented Lagrangian method, with

a prospective advantage of the former over the latter.

A general drawback of these preconditioners is that, in some situations, for ex-

ample, when A = D−ω M with both D and M positive semidefinite (the case of

time-harmonic Maxwell’s equations), our bounds also depend on ω . Clearly, in such

a case, if ω is very large, one should rather, instead of A, treat M as the dominant

term in this block. How to choose the inexact preconditioning blocks in a robust way

so that the block preconditioners would perform well independently of ω remains an

open problem.
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