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Summary. In this paper, we consider a new approach to estimation from below of the lowest

eigenvalues of symmetric positive definite elliptic operators. The approach is based on the

overlapping domain decomposition procedure and on the replacement of subdomain operators

by special low rank perturbed scalar operators. The algorithm is illustrated by applications to

model problems with mixed boundary conditions and strongly discontinuous coefficients.

1 Introduction

In this paper, we propose a new approach for estimations from below of the lowest

eigenvalues of a symmetric elliptic operator

L =−
d

∑
i, j=1

∂

∂xi

ai j
∂

∂x j

+ c. (1)

Here, a = (ai j) is a symmetric uniformly positive definite d×d matrix with piecewise

smooth bounded entries ai j, i, j = 1, d, c is a nonnegative piecewise smooth bounded

function, and d = 2,3. Without loss of generality, we assume that the matrix a = a(x)
and the coefficient c = c(x), x ∈ Rd are piecewise constant.

We consider the eigenvalue problem

Lw = λw (2)

in a bounded domain Ω ⊂ Rd with the boundary ∂Ω subject to the boundary condi-

tions

w = 0 on ΓD,

u ·n−σw = 0 on ΓR,
(3)

where u =−a∇w is the flux vector-function, ΓD = Γ D is a Dirichlet part of ∂Ω , ΓR is

a Robin part of ∂Ω , σ = σ(x), x ∈ ΓR, is a nonnegative piecewise constant function,
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and n is the outward unit normal to ΓR. In the case σ ≡ 0 the Robin boundary condi-

tion becomes the Neumann boundary condition. We assume that ΓD∪Γ R = ∂Ω . For

the sake of simplicity, we assume that Ω is either a polygon (d = 2), or a polyhedron

(d = 3).

It is well known that all the eigenvalues λ in (2), (3) are real, nonnegative, and

the lowest eigenvalue λ1 is the solution of the minimization problem

λ1 = inf
v∈V,||v||2=1

Φ(v). (4)

Here,

Φ(v) =
∫

Ω

[ d

∑
i, j=1

ai j
∂v

∂xi

∂v

∂x j

+ cv2
]

dx+
∫

ΓR

σv2 ds. (5)

and

V = {v : v ∈ H1, v = 0 on ΓD}, (6)

where H1 ≡ H1(Ω) is the Sobolev space and ‖v‖2 is the L2(Ω) norm of v.

In the only case σ ≡ 0 on ΓR, Γ R = ∂Ω , and c≡ 0 in Ω (the Neumann problem)

the minimal eigenvalue λ1 is equal to zero. Otherwise, λ1 is positive. In any case, λ1

is a single eigenvalue, and an eigenfunction w1 = w1(x) does not change its sign in

Ω (for instance, w1(x) > 0 for all x ∈Ω ). For the Neumann problem, we denote the

minimal nonzero eigenvalue by λ2. This eigenvalue may be multiple.

Estimations from above for the minimal (or the minimal nonzero) eigenvalue

in (2), (3) can be obtained by the Ritz method, in particular, by using the P1 finite

element method. In many practical applications, estimations from below are much

more important. In particular situations (see [1]), the estimates from below can be

obtained by using the finite difference discretization of (2), (3). Another method

is described in [4]. The latter method is rather limited and very complicated for

implementation.

In this paper, we propose a new method to derive estimations from below for the

minimal eigenvalue λ1 (minimal nonzero eigenvalue λ2) in (2), (3). The method is

based on a partitioning of the domain Ω into simpler shaped subdomains. We assume

that we are able to derive explicit estimates from below of the lowest eigenvalues of

the eigenvalue problems in subdomains. The accuracy of the estimates depends on a

partitioning into subdomains. Thus, the method does not always provide sufficiently

reliable (or practically acceptable) estimates from below of the lowest eigenvalues.

The paper is organized as follows. In Section 2, we describe the new method

on the functional level. The finite element justification of the method is given in

Section 3.

2 Description of the Method

Let Ω be partitioned into m≥ 1 polygonal, d = 2 (polyhedral, d = 3), open overlap-

ping subdomains Ωk, k = 1, m, i.e. Ω =
⋃m

k=1 Ωk. We define m quadratic functionals
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Φk(v) =
∫

Ω

d

∑
i, j=1

a
(k)
i j

∂v

∂xi

∂v

∂x j

dx+
∫

ΓR

σ (k)v2 ds (7)

where a(k) = (a
(k)
i j ) are symmetric d × d matrices with piecewise constant entries

a
(k)
i j , i, j = 1, d, σ (k) are nonnegative piecewise constant functions defined on ΓR,

and v ∈ V . We assume that the matrices a(k) are positive definite in Ωk and a(k) = 0

in Ω \Ω k, and that the functions σ (k) are zero on ΓR \ ∂Ωk, k = 1, m. To this end,

the formulae

Φk(v) =
∫

Ωk

d

∑
i, j=1

a
(k)
i j

∂v

∂xi

∂v

∂x j

dx+
∫

ΓR,k

σ (k)v2 ds, (8)

where ΓR,k = ΓR∩∂Ωk, gives an alternative definition for Φk(v), k = 1, m.

We assume that

a =
m

∑
k=1

a(k) in Ω (9)

σ =
m

∑
k=1

σk on ΓR. (10)

Then, under the latter assumptions we get

Φ(v) =
m

∑
k=1

Φk(v)+

∫

Ω
cv2 dx. (11)

Let us consider the eigenvalue problems

Lk w = µ w in Ωk,

w = 0 on ΓD∩∂Ωk,

u(k) ·nk = 0 on ∂Ωk \∂Ω ,

u(k) ·nk−σ (k)w = 0 on ΓR,k,

(12)

where

Lk =−
d

∑
i, j=1

∂

∂xi

a
(k)
i j

∂

∂x j

u(k) =−a(k)∇w,

(13)

and nk is the outward unit normal to ∂Ωk, k = 1, m.

We partition the subdomains Ωk, k = 1, m, into two groups. For the subdomains

Ωk in the first group we assume that ΓD∩∂Ωk = /0 and σ (k) = 0 on ΓR,k (or ΓR,k = /0),

1≤ k ≤ m. For the subdomains Ωk in the first group, the minimal eigenvalue µ
(k)
0 in

(12) is equal to zero and
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w0 =
1

|Ωk|1/2
in Ωk, (14)

where |Ωk| is the area of Ωk, d = 2 (volume of Ωk, d = 3), is the corresponding L2-

normalized positive eigenfunction. We denote the minimal (lowest) nonzero eigen-

value in (12) by µ
(k)
1 , 1≤ k ≤ m.

All other subdomains Ωk, 1≤ k≤m, we put into the second group. For a subdo-

main Ωk in the second group the minimal eigenvalue in (12) is positive. We denote

this eigenvalue also by µ
(k)
1 , 1≤ k ≤ m.

It is obvious (see [3]) that for any subdomain Ωk in the first group the inequality

Φk(v)≥ µ
(k)
1 (Pkv, v)≡ µ

(k)
1

∫

Ω
(Pkv)vdx (15)

holds for any v ∈V where the operator Pk is defined by

(Pkv)(x) =

{
0, x ∈Ω \Ω k,

v(x)− 1
|Ωk|

∫
Ωk

v(x′)dx′, x ∈Ωk.
(16)

For the subdomains Ωk in the second group the inequality (15) also holds with

the operator Pk defined by

(Pkv)(x) =

{
0, x ∈Ω \Ω k,

v(x), x ∈Ωk.
(17)

In both cases, the operator Pk is an orthogonal L2-projector, i.e. Pk = P∗k and P2
k = Pk.

Let us assume that we have a set of positive numbers µk which estimate from be-

low the eigenvalues µ
(k)
1 in (15), i.e. µ

(k)
1 ≥ µk > 0, k = 1, m, and define the operator

P =
m

∑
k=1

µkPk. (18)

By the definition,

Φ(v)≥ (Pv, v)+(cv, v) for all v ∈V. (19)

Thus, in the case of a positive definite operator L we obtain

λ1 = min
v∈V,||v||2=1

Φ(v)≥ ν1 = min
v∈L2,||v||2=1

[(Pv, v)+(cv, v)] (20)

where ν1 is the minimal eigenvalue of the eigenvalue problem

Pv+ cv = ν v in Ω . (21)

In the case of the Neumann problem, the minimal nonzero eigenvalue λ2 in (2),

(3) is estimated from below by the minimal nonzero eigenvalue ν2 in (21), i.e.
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λ2 ≥ ν2 = min
v∈L2,‖v‖2=1,(v,1)=0

(Pv, v). (22)

The set Γ̂ =
⋃m

k=1 ∂Ωk partitions Ω into n̂ polygonal, d = 2 (polyhedral, d = 3),

subdomains Ĝs, s = 1, n̂. We impose an additional partitioning of Ω into n, n ≥ n̂,

nonoverlapping subdomains Gs with boundaries ∂Gs, s = 1, n, such that the set Γ̂
belongs to the set Γ =

⋃n
s=1 ∂Gs. We assume that each of the subdomains Gs, s =

1, n, is simply connected and does not coincide with any of the subdomains Ωk,

k = 1, m. We also assume that the coefficient c = c(x) is constant in each of the

subdomains Gs, s = 1, n.

Define the set of orthogonal projectors Qk by

(Qkv)(x) =

{
0, x ∈Ω \Gk,

1
|Gk|

∫
Gk

v(x′)dx′, x ∈ Gk,
(23)

where v∈ L2(Ω). Then, the mean values vs in Gs of a function v∈ L2(Ω) are defined

by

vs = Qsv, s = 1, n. (24)

Assume that a subdomain Ωk, 1≤ k ≤ m, belongs to the first group and

Ω k =
t⋃

s=1

Gs. (25)

Then, it is obvious that

Pk v = v− 1

|Ωk|
t

∑
s=1

|Gs|vs, (26)

where vs = Qsv, s = 1, t.

Let ν be an eigenvalue in (21) and W be the set of all the eigenfunctions corre-

sponding to this eigenvalue. A simple analysis of equations (21) in subdomains Gs,

s = 1, n, shows that W always contains a function which is a constant in each of the

subdomains Gs, s = 1, n.

It follows that in (20) and (21) we can replace the space L2 by the space Vh

of functions which are constant in each of the subdomains Gs, s = 1, n, i.e. the

definitions of ν1 in (20) and ν2 in (22) can be replaced by

ν1 = min
v∈Vh, ‖v‖2=1

[(Pv, v)+(cv, v)], (27)

ν2 = min
v∈Vh, ‖v‖2=1, (v, 1)=0

(Pv, v), (28)

respectively.

The variational problems (27) and (28) result in the algebraic eigenvalue prob-

lems

K w̄ = ν M w̄, w̄ ∈ Rn, (29)

with the diagonal n×n matrix
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M = diag{|G1|, . . . , |Gn|} .

The matrix K for problem (27) is symmetric and positive definite. The matrix K

for problem (28) is symmetric and positive semidefinite with the explicitly known

one-dimensional null-space.

Remark 1. The replacement of the space V by the space L2(Ω) in (20) and (22)

can be justified by using the convergence results for the P1 finite element method for

eigenvalue problem (4)–(6) on quasiuniform regular shaped triangular mesh/tetrahedral

meshes. To prove the latter statement, we have to apply the proposed method to the

P1 discretization of (2)–(3) on the meshes which are conforming with respect to the

partitioning of Ω into subdomains Gs, s = 1, n.

Remark 2. The requirement Ω =
⋃m

k=1 Ωk in the beginning of Section 2 can be re-

placed by the following weaker requirement. Namely, we may require that each two

points in Ω should be connected by a curve γ in
⋃m

k=1 Ωk. For instance, the partition-

ing of the unit square Ω = (0; 1)× (0; 1) into rectangles Ω1 = (0; 0.5)× (0; 1),
Ω2 = (0.5; 1)× (0; 1), and Ω3 = (0; 1)× (0; 0.5) is admissible (see Example 2 in

the next section).

3 Two Simple Examples

Example 1. Let Ω be the unit square and ω be a simply connected subdomain in Ω .

We denote by δ the area of ω and assume that L = −△+ c where △ denotes the

Laplace operator, ∂Ω = Γ N and the coefficient c in (1) equals to a positive constant

cω in ω and zero in Ω \ω . We choose m = 1, i.e. Ω1 = Ω , and partition Ω into

subdomains G1 = ω and G2 = Ω \ω , i.e. n = 2. Applying the algorithm described

in the previous section with µ(1) = π2 we get K = M K̂ where

K̂ =

(
π2(1−δ )+ cω −1+δ

−δ δ

)
(30)

and M = diag{δ ; 1−δ}. Computing the minimal eigenvalue ν1 of (20), we get the

estimate

λ1 ≥ ν1 >
cω δ

2(π2 + cω)
. (31)

Example 2. Let Ω be the unit square partitioned into three subdomains Ω1 = (0; 1)×
(0; δ ), Ω2 = (δ ; 1)× (0; 1), and Ω3 = (0; 1)× (δ ; 1) as shown in Fig. 1 where

δ ∈ (0; 1). We assume that L = −△ and ΓD = {(x1,x2) : x1 = 0, x2 ∈ (0; δ )}. In

Figure 1, we show the partitioning of Ω into rectangles Gi, i = 1, 4.

We define the operators Lk by setting a(k) = akI2, k = 1,2,3. Here, I2 denotes the

identity 2×2 matrix and the functions ak, k = 1,2,3, are defined as follows:
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G 1 G 2

G 3G 4

δ

δ

0 1

1

Fig. 1. Partitioning of Ω into rectangles Gi, i = 1, 4

a1 =

{
1 in G1,

0.5 in G2,

a2 = 0.5 in G2

⋃
G3,

a3 =

{
1 in G3,

0.5 in G4.

(32)

Applying the algorithm described in the previous section with µ(1) = µ(2) =
µ(3) = π2/2, we get K = M K̂ where

K̂ =
π2

2




0.25 0 0 0

0 2−δ −1+δ 0

0 −δ 2δ −δ
0 0 −1+δ 1−δ


 . (33)

By using the straightforward calculations, we derive the estimate

λ1 ≥ ν1 ≥ ‖K̂‖−1
∞ =

π2

2
· δ (1−δ )(2−δ )

(1+δ )(3−δ )
. (34)

Thus, in the case δ ≪ 1 we get the asymptotic estimate

λ1 ≥
π2

3
δ . (35)

Acknowledgement. The author is grateful to O. Boiarkine for preparation of this paper and to

the referee for the useful remarks.

References

[1] Forsythe, G.E., Wasow, W.R.: Finite-Difference Methods for Partial Differential

Equations. Applied Mathematics Series. Wiley, New York, 1960.



314 Yuri A. Kuznetsov

[2] Gould, S.H.: Variational methods for eigenvalue problems. An introduction to

the Weinstein method of intermediate problems. Oxford University Press, Lon-

don, 1966.

[3] Kuznetsov, Y.A.: Two-level preconditioners with projectors for unstructured

grids. Russian J. Numer. Anal. Math. Modelling, 15(3-4):247–255, 2000.

[4] Weinstein, A., Stenger, W.: Methods of intermediate problems for eigenvalues.

Theory and ramifications, vol. 89 of Mathematics in Science and Engineering.

Academic, New York–London, 1972.


