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Summary. An iterative substructuring method with Lagrange multipliers is considered for

the second order elliptic problem, which is a variant of the FETI-DP method. The standard

FETI-DP formulation is associated with a saddle-point problem which is induced from the

minimization problem with a constraint for imposing the continuity across the interface. Start-

ing from the slightly changed saddle-point problem by addition of a penalty term with a posi-

tive penalization parameter η , we propose a dual substructuring method which is implemented

iteratively by the conjugate gradient method. In spite of the absence of any preconditioners, it

is shown that the proposed method is numerically scalable in the sense that for a large value of

η , the condition number of the resultant dual problem is bounded by a constant independent of

both the subdomain size H and the mesh size h. We discuss computational issues and present

numerical results.

1 Introduction

Let us consider the following Poisson model problem

−∆u = f in Ω ,

u = 0 on ∂Ω ,
(1)

where Ω is a bounded polygonal domain in R2 and f is a given function in L2(Ω).
For simplicity, we assume that Ω is partitioned into two nonoverlapping subdomains

{Ωi}2
i=1 such that Ω =

⋃2
i=1 Ω i. It is well-known that problem (1) is equivalent to

the constrained minimization

min
vi∈H1(Ωi)

vi=0 on ∂Ω∩∂Ωi
v1=v2 on ∂Ω1∩∂Ω2

2

∑
i=1

(
1

2

∫

Ωi

|∇vi|2 dx−
∫

Ωi

f vi dx

)
. (2)

In a domain-decomposition approach, a key point is how to convert the constrained

minimization problem (2) into an unconstrained one. The most popular methods,
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developed for different purposes are the Lagrangian method, the method of penalty

functions, and the augmented Lagrangian method. Such various ideas have been in-

troduced for handling constraints as the continuity across the interface in (2) (see

[4, 6, 8]). The FETI-DP method is one of the most advanced dual substructuring

methods, which introduces Lagrange multipliers to enforce the continuity constraint

by following the Lagrangian method. In this paper, we propose a dual iterative sub-

structuring algorithm which deals with the continuity constraint across the interface

using the augmented Lagrangian method. Many studies of the augmented Lagrangian

method have been done in the frame of domain-decomposition techniques which be-

long to families of nonoverlapping Schwarz alternating methods, variants of FETI

method, etc. (cf. [1, 3, 8, 11])

This paper is organized as follows. In Section 2, we introduce a saddle-point for-

mulation for an augmented Lagrangian with a penalty term. Section 3 provides a dual

iterative substructuring method and presents algebraic condition number estimates.

In Section 4, we mainly deal with computational issues in view of implementation

of the proposed method and show the numerical results. For details omitted here due

to space restrictions, we refer the reader to [9].

2 Saddle-Point Formulation

Let Th denote a quasi-uniform triangulation on Ω . We consider the discretized vari-

ational problem for (1): find uh ∈ Xh such that

a(uh,vh) = ( f ,vh) ∀vh ∈ Xh, (3)

where a(uh,vh) =
∫

Ω ∇uh ·∇vh dx and ( f ,vh) =
∫

Ω f vh dx. Here, Xh is the standard

P1-conforming finite element space.

Before proposing a constrained minimization problem whose minimizer has a

connection with the solution of (3), we introduce some commonly-used notations.

We assume that Ω is decomposed into N non-overlapping subdomains {Ωk}N
k=1 such

that

(i) Ωk is a polygonally shaped open subset of Ω .

(ii) the decomposition {Ωk}N
k=1 of Ω is geometrically conforming.

(iii) Γkl denotes the common interface of two adjacent subdomains Ωk and Ωl .

Let us use Thk
to denote a quasi-uniform triangulation of Ωk, where we have match-

ing grids on the boundaries of neighboring subdomains across the interfaces. On

each Ωk, we set a finite-dimensional subspace Xk
h of H1(Ωk):

Xk
h = {vk

h ∈ C0(Ω k) | ∀τ ∈ Thk
, vk

h|τ ∈ P1(τ), vk
h|∂Ω∩∂Ωk

= 0}.

Next, we define a bilinear form on Xc
h ×Xc

h :

ah(u,v) =
N

∑
k=1

∫

Ωk

∇u ·∇vdx.
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where Xc
h = {v = (vk

h)k ∈∏N
k=1 Xk

h | v is continuous at each corner}.
It is well-known that solving the finite element problem (3) is equivalent to solv-

ing the saddle-point formulation: find a saddle point (uh,λh) ∈ Xc
h ×RE such that

L(uh,λh) = max
µh∈RE

min
vh∈Xc

h

L(vh,µh) = min
vh∈Xc

h

max
µh∈RE

L(vh,µh), (4)

where the Lagrangian L : Xc
h ×RE → R is defined by

L(v,µ) = J(v)+ 〈Bv,µ〉= 1

2
ah(v,v)− ( f ,v)+ 〈Bv,µ〉.

Here, B is a signed Boolean matrix such that for any v ∈ Xc
h , Bv = 0 which enforces

the continuity of v across the interface.

Now, we shall slightly change the saddle-point formulation (4) by addition of a

penalty term to the Lagrangian L. Let Jη be a bilinear form on Xc
h ×Xc

h defined as

Jη(u,v) = ∑
k<l

η

h

∫

Γkl

(uk−ul)(vk− vl)ds, η > 0,

where h = maxk=1,··· ,N hk. Given the augmented Lagrangian Lη defined by

Lη(v,µ) = L(v,µ)+
1

2
Jη(v,v),

we consider the following saddle-point problem:

Lη(uh,λh) = max
µh∈RE

min
vh∈Xc

h

Lη(vh,µh) = min
vh∈Xc

h

max
µh∈RE

Lη(vh,µh). (5)

Based on the characterization of a saddle-point formulation like problem (5) by a

variational problem in [7], it can be shown that the saddle-point of (5) is equivalent

to the solution of the following variational problem: find (uh,λh) ∈ Xc
h ×RE such

that

aη(uh,vh)+ 〈vh,B
T λh〉= ( f ,vh) ∀vh ∈ Xc

h ,

〈Buh,µh〉= 0 ∀µh ∈ RE .
(6)

Moreover, the primal solution uh of (6) is exactly equal to the solution of the varia-

tional problem (3).

3 Iterative Substructuring Method

The saddle-point formulation (6) is expressed in the following algebraic form




AΠΠ AΠe 0

AT
Πe A

η
ee BT

e

0 Be 0






uΠ

ue

λ


=




fΠ

fe

0


 , (7)
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where uΠ denotes the degrees of freedom (dof) at the interior nodes and the corners,

ue those on the edge nodes on the interface except at the corners. After eliminating

uΠ and ue in (7), we have the following system for the Lagrange multipliers:

Fη λ = dη (8)

where

Fη = BeS−1
η BT

e , dη = BeS−1
η ( fe−AT

ΠeA−1
ΠΠ fΠ ).

Here, Sη = S+ηJ = (Aee−AT
ΠeA−1

ΠΠ AΠe)+ηJ. Noting that Fη is symmetric positive

definite, we solve the resultant dual system (8) iteratively by the conjugate gradient

method (CGM). Hence, the key issue is to provide a sharp estimate for the condition

number of Fη .

Note that J in Sη is represented as J = BT
e D(JB)Be where D(JB) is a block di-

agonal matrix such that the diagonal block JB is a positive definite matrix induced

from
1

h

∫

Γi j

ϕψ ds ∀ϕ,ψ ∈ Xc
h |Γi j

.

Let us denote by Λ the space of vectors of dof associated with the Lagrange multi-

pliers where the norm ‖ · ‖Λ and the dual norm ‖ · ‖Λ ′ are defined by

‖µ‖2
Λ = µT D(JB)µ ∀µ ∈Λ and ‖λ‖Λ ′ = max

µ∈Λ

|〈λ ,µ〉|
‖µ‖Λ

∀λ ∈Λ .

In order to derive bounds on the extreme eigenvalues of Fη , we first mention

some useful properties.

Lemma 1. For S = Aee−AT
ΠeA−1

ΠΠ AΠe, there exists a constant C > 0 such that

vT
e Sve ≤CvT

e Jve ∀ve⊥KerBe.

Proposition 1. Let ‖ · ‖Sη be the norm induced by the symmetric positive definite

matrix Sη . For any λ ∈ RE ,

λ T Fη λ = max
ve 6=0

|vT
e BT

e λ |2
‖ve‖2

Sη

.

From Lemma 1 and Proposition 1, we have

Theorem 1. For any λ ∈Λ , we have that

1

C +η
‖λ‖2

Λ ′ ≤ λ T Fη λ ≤ 1

η
‖λ‖2

Λ ′ .

where C is the constant estimated in Lemma 1.

Using Theorem 1 based on Lemma 3.1 in [10], we now give the estimate of the

condition number κ(Fη).
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Corollary 1. We have the condition number estimate of the dual system (8)

κ(Fη)≤
(

C

η
+1

)
κ(JB), C =

λ S
max

2λ JB
min

,

where λ S
max and λ JB

min are the maximum eigenvalue of S and the minimum eigenvalue

of JB, respectively. Furthermore, the constant C is independent of the subdomain

size H and the mesh size h.

Corollary 2. For a sufficiently large η , there exists a constant C∗ independent of h

and H such that

κ(Fη)≤C∗.

In particular, assuming that each triangulation Thk
on Ωk is uniform, C∗ = 3.

Remark 1. To the best of our knowledge, the algorithm with such a constant bound

of the condition number is unprecedented in the field of domain decomposition.

Adding the penalization term Jη to the FETI-DP formulation results in a strongly

scalable algorithm without any domain-decomposition-based preconditioners even

if it is redundant in view of equivalence relations among the concerned minimization

problems.

4 Computational Issues and Numerical Results

4.1 Computational Issues

In focusing on the implementation of the proposed algorithm, the saddle-point for-

mulation in form of (7) is rewritten as follows



K
η
rr Krc BT

r

KT
rc Kcc 0

Br 0 0






ur

uc

λ


=




fr

fc

0


 , (9)

where uc denotes the dof at the corners and ur the remaining of dof. Eliminating ur

and uc in (9) yields

Fη λ = dη (10)

where

Fη = Frr +FrcF−1
cc FT

rc , dη = dr−FrcF−1
cc dc.

In view of implementation, the difference with the FETI-DP method ([4]) is that we

invert K
η
rr that contains the penalization parameter η . To compare our algorithm with

the FETI-DP method, we need to make a more careful observation of behavior of

(Kη
rr)
−1. Note that

Kη
rr = Krr +η J̃ =

[
Aii Aie

AT
ie Aee

]
+

[
0 0

0 ηJ

]

where J = BT
e D(JB)Be. Thanks to the specific type of discrete Sobolev inequality in

Lemma 3.4 of [2], we get the following estimate.
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Theorem 2. For each η > 0, we have that

κ(Kη
rr) .

(
H

h

)2(
1+ log

H

h

)
(1+η).

Theorem 2 shows how severely η damages the property of K
η
rr as η is increased.

Since K
η
rr is solved iteratively, it might be expected that the large condition number

of K
η
rr shown above may cause the computational cost relevant to K

η
rr to be more

expensive. We shall establish a good preconditioner for K
η
rr in order to remove a bad

effect of η . We introduce the preconditioner M as follows

M = Krr +η J̃ =

[
Aii 0

0 Aee

]
+

[
0 0

0 ηJ

]
.

Theorem 3. The condition number of the preconditioned problem grows asymptoti-

cally as

κ(M−1Kη
rr) :=

λmax(M
−1K

η
rr)

λmin(M−1K
η
rr)

.
H

h

(
1+ log

H

h

)
.

4.2 Numerical Results

Let Ω be [0,1]2 ⊂ R2. We consider the Poisson problem with the exact solution

u(x,y) = y(1− y)sin(πx).

The reduced dual problem (10) is solved iteratively by CGM. We monitor the con-

vergence of CGM with the stopping criterion
‖rk‖
‖r0‖ ≤ TOL, where rk is the dual

residual error on the k-th CG iteration and TOL=10−8. We decompose Ω into Ns

square subdomains with Ns = 1/H×1/H, where each subdomain is partitioned into

2×H/h×H/h uniform triangular elements.

First, we make a comparison between our proposed method and the FETI-DP

method from the viewpoint of the conditioning of the related matrices Fη and F .

Table 1 shows that the condition number κ(Fη) and the CG iteration number remain

almost constant when the mesh is refined and the number Ns of subdomains is in-

creased while keeping the ratio H/h constant. Moreover, we observe numerically

that the condition number of Fη is bounded by the constant 3 independently of h and

H, while the condition number in the FETI-DP method grows with increasing H/h

(cf. [4, 5]). In addition, it is shown in Table 1 that the proposed method is superior

to the FETI-DP method in the number of CG iterations for convergence. In Table 2,

the condition number of K
η
rr and M−1K

η
rr are listed to show how well the designed

preconditioner M for (Kη
rr)
−1 performs. It confirms that the influence of η on κ(Kη

rr)
is completely removed after adopting M.
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Table 1. Comparison between the proposed method (η = 106) and the FETI-DP method

(η = 0)

Ns
H
h

η = 106 η = 0

iter. no κ(Fη ) iter. no κ(F)

4×4

4 3 2.0938 14 7.2033

8 7 2.7170 23 2.2901e+1

16 13 2.9243 33 5.9553e+1

32 14 2.9771 48 1.4707e+2

8×8

4 3 2.0938 18 7.9241

8 7 2.7170 32 2.5668e+1

16 12 2.9245 48 6.7409e+1

16×16
4 3 2.0938 19 7.9461

8 7 2.7170 34 2.6324e+1

Table 2. Performance of preconditioner M for (K
η
rr)
−1 where Ns = 4×4

η
H
h = 4 H

h = 8 H
h = 16

κ(K
η
rr) κ(M−1K

η
rr) κ(K

η
rr) κ(M−1K

η
rr) κ(K

η
rr) κ(M−1K

η
rr)

0 43.2794 14.8532 228.0254 40.0332 1.1070e+3 104.3459

1 34.5773 11.8232 161.1716 28.7437 7.0562e+2 68.3468

101 91.3072 11.4010 420.1058 28.1835 1.8390e+3 67.6093

102 8.5119e+2 11.3525 3.9824e+3 28.1232 1.7513e+4 67.5325

103 8.4538e+3 11.3475 3.9616e+4 28.1170 1.7430e+5 67.5247

104 8.4480e+4 11.3470 3.9596e+5 28.1164 1.7421e+6 67.5240

105 8.4474e+5 11.3469 3.9593e+6 28.1164 1.7420e+7 67.5239

106 8.4473e+6 11.3469 3.9593e+7 28.1164 1.7420e+8 67.5239

107 8.4473e+7 11.3469 3.9593e+8 28.1164 1.7420e+9 67.5238

5 Conclusions

In this paper, we have proposed a dual substructuring method based on an augmented

Lagrangian with a penalty term. Unlike other substructuring methods, it is shown that

without any preconditioners, the designed method is scalable in the sense that for a

large penalty parameter η , the condition number of the relevant dual system has a

constant bound independent of H and h. In addition, we dealt with an implementa-

tional issue. An optimal preconditioner with respect to η is established in order to

increase the ease of use and the practical efficiency of the presented method.
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