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Summary. Harmonic functions attain their pointwise maximum on the boundary of the do-
main. In this article, we analyze the relationship between various norms of nearly harmonic
functions and we show that the trace norm is maximized on the boundary of the domain. One
application is that the Optimized Schwarz Method with two subdomains converges for all
Robin parameters o > 0.

1 Introduction

Given a domain 2 C R2, consider the model problem
—V-(aVu)+cu=f inQ and u=0 ondQ, (1)

where a : Q — My is a symmetric and coercive 2 x 2 matrix valued function of
x €  and c is a non-negative function of x € 2. If we have a domain decomposition
Q = QUL and given functions vy, wg on 21, £2,, respectively, typical domain de-
composition algorithms iteratively solve problems of the type (—V - (aV) +c)vy = f
in Q) and (—V - (aV)+c)wy = f in Q, k > 1, with some boundary conditions. In
the classical Schwarz algorithm, the local problems use Dirichlet data. Optimized
Schwarz Methods replace the Dirichlet subproblems by Robin subproblems; see [5]
for a detailed discussion and bibliography. The analysis of the convergence of Op-
timized Schwarz Methods turned out to be more complicated than that of classical
Schwarz methods; see [7, 8, 9].

Schwarz’s idea [11] to prove the convergence was to use the maximum principle.

This is based on the observation that the error iterates u,(c') —u are (a,c)-harmonic on

each subdomain, for every k > 1; i.e., they solve the PDE —A - (aA u,((l)) +cu,(€l) =0.
In a recent paper [10], we have shown that trace norms can be used in a similar way
to show the convergence of Optimized Schwarz Methods, which use Robin boundary
conditions on the interfaces between the subdomains.

Let Q be a domain and I] C Q, I} C dQ be curves. Our goal is to give some

conditions under which there is a positive @ < 1 such that the inequality
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is satisfied for every (nearly) (a,c)-harmonic function v on Q satisfying suitable
boundary conditions. This result is more general than the one we presented in [10],
where it is assumed that v is exactly (a,c)-harmonic.

The structure of this article is as follows. In Section 2, we introduce the notion of
(g,a,c)-harmonicity, and e-relative uniformity. With these definitions, we are able
to prove our main result, which is that the maximum trace L% norm is attained on the
boundary. In Section 3, we discuss some applications to Schwarz methods.

2 The Maximum Principle for L>-Trace Norms

To describe our main result, we must first discuss certain Sobolev estimates; we refer
the reader to [1, 2, 7], and references therein for details.

2.1 Preliminaries on the Domain and the Interfaces

Let p be a nonnegative function on Q. Let H'(Q,p) be the space of functions v of
finite weighted Sobolev norm

Mg = [ (VE+1P)p.

If p(x) goes to zero linearly as x approaches the boundary d€2, then the trace map
u — ulyq is discontinuous, i.e., there is no trace space [6].

Let Q be parametrized by a function ®(x,y). The domain of @ is Z = {(x,y)|xp <
x < xpand p(x) <y < ¢g(x)}, where xy < x, are real numbers. For simplicity, all
domains in this paper are Lipschitz.! We assume that p and g are C' and that @ is C2.
Because of the parametrization, Q2 is furthermore piecewise C! and connected.? For
each fixed x, we define I to be the curve parametrized by y — ®(x, ). In the context
of domain decompositions, €2 is one of the two overlapping subdomains. Choosing
x1 between xo and xo, I}, and I, are the interfaces defined by the boundary of the
overlap. We define Uy = U, <¢<, [, the part of Q “to the left” of I}; see Fig. 1. If v

isin H' (), we define

e(x) =e(x,v) :/ V2. 3)

I

Thus, our goal is to find a positive @ < 1, and conditions on Q, ®,v so that e(x]) <
we(x,), i.e., that (2) holds.

' We do not assume that  is convex.
2 We could relax the connectedness hypothesis by using one chart per component.
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Fig. 1. Left: the domain £ and the two interfaces Iy, and I}, (in bold). Right: Uy (shaded) and
I (bold).

2.2 (&,a,c)-Harmonicity

A function v in H'(Q) is said to be (a,c)-harmonic if (—V -aV + ¢)v = 0. Such
functions obey the maximum principle: the L norm of an (a,¢)-harmonic noncon-
stant function is attained on the boundary, and not on the interior. We want to find a
notion of near-(a,c)-harmonicity, which we will call (g,a,c)-harmonicity, such that
a related maximum principle holds. To that end, let v be in H'(Q) with v =0 on
dQ\ I, and let v be the outer normal to Uy. Consider the quantity

X2 rq(x)
S= / v(av)-Vv|®y|dydx
x Jp(x) .
293
= / —v(=V-aV+c)v+ (V) a(Vv) + v dsdx 4)
X1 X
:/ [—v(=V-aV +c)v+ (V) Ta(Vv) +o?]p, %)
Q
where we have used Green’s integration by parts to obtain (4), and Fubini’s Theorem
to obtain (5). The function p(x) is therefore the Lebesgue measure of the set {& €
(x1,Xx2) : X € Ug }, and hence p(x) = O(dist(x,I,)). We want to be able to compare
S with

vl = [ (V)7 a(¥y) +ev?lp, ©

which is a norm that is equivalent to [|v]| ;1o p).3 To that end, for € > 0, we say that
veE H'(Q)is (¢,a,c)-harmonic if

—ellbl}} < [ v(=V-aV+opp el 9

Note that an (a, ¢)-harmonic function is (0,a, c)-harmonic. If v is (€, a, ¢)-harmonic,
and if v=0o0n dQ \ I3,, then we have

3 The equivalence of norms is a variant of the standard argument that the bilinear form of
the elliptic operator is equivalent to the H'! norm, but with the added weight p; see [2] for
details. In the case ¢ = 0, a variant of the Friedrichs’ inequality is used.
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(1—g)plf <S< (1+e)|v7.
We define
/i I}(DxT av

- Jplav)?

that is, for any x € (x1,x2), s(x)a(®(x,-))v(P(x,-)) is the orthogonal projection* of
@, (x,-) onto the span of av in L*(I). Let g be a C° vector field. Then forv € H' (),
Dgv =g-Vv e L*(Q). We will use the field g = &, — sav.

s(x) (®)

2.3 e-Relative Uniformity

We now turn to the notion of relative uniformity. We first want to impose a condition
so that &, is not too tangent to I, in the sense that there are constants C; > 0 and
C, < oo, such that C; < s(x) < C, for all x.

If a is the identity and & is conformal, then @, - P, =0, i.e., v is parallel to
@, and s(x) is strictly positive and bounded, cf. (8). If & is not conformal, but still
0 < C) <5<y < oo, we say that @ is “nearly conformal”. Using (6), if vis (€,a,c¢)-
harmonic, for a fixed € >0, and v =0 on dQ \1}2, then there are constants C, =
C,(€) and C}, = C/,(€) such that

5 x rq(x) , )
@M< [ s [ @) waldvar< @i o)
Jxp plx

Specifically, one may use C,(€) = 2(C; — €C3) and C, (&) = 2(C, + €C). Further
assume that there are constants Cy, < oo and Cy < oo such that

X2 rq(x) )
[ [ 20— sav)- ol dyax| < ¢ b, (10
x Jp(x)
X rq(x) P, . P
/ / Vv 22" dydx| < Colv|3. (11)
n Jp) Dyl

If a is the identity and @ is conformal, then C, = Cy = 0. Our allowances for Cy,Cy >
0 means that we can use a @ which is “nearly conformal”.

Furthermore, if there is a diffeomorphism that turns a into the identity and &
into a conformal map, we also have Cy, = Cy = 0. Thus, if the interfaces I, and I3,
are “nearly parallel” in the metric induced by a, these constants will be small. In our
Definition 1 we want Cy and Cy to be small in the sense that their sum is smaller than
Cy(e).

Definition 1. Let 2 be a domain, fix € > 0 and consider the elliptic problem (1). Let
D be a parametrization of Q as above. Let s(x) be as in (8), and let the positive
constants C,(€), Cy, and Cy be such that (9), (10), and (11) hold. We say that the
parametrization is €-relatively uniform if the inequality C,(€) — Cy, — Cp > 0 holds,
for every v which is (€,a,c)-harmonic withv =0 on dQ \ I,.

4 There is no reason to prefer this particular choice of s(x), but we hope that it makes &, —
sav small in a useful way.
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2.4 Maximum Principle for L>-Trace Norms

We present our main Theorem which depends on the elliptic operator (as parametrized
by a and ¢), on the domain 2 and its parametrization ¢, as well as on € > 0.

Theorem 1. (Maximum principle for a trace norm) Fix € > 0 and let ® be an &-
relatively uniform parametrization of 2. Then, there exists a positive ® < 1 such
that, for every (€,a,c)-harmonic v € H'(Q) withv =0 on dQ\I,, then the estimate
e(x1) < we(xy) is satisfied.

Proof. This proof proceeds in two steps. First, we justify differentiating under the
integral sign, then we use Green’s Theorem and various trace estimates to show
that ¢/ > 0. Let K be an upper bound for |p(x)| and |g(x)|. Let w € H'(Z) with
w(x, p(x)) =w(x,q(x)) =0 for x € (x1,x2). Let

(x
o(x) = /p va (x,y)dy. (12)

Let ¢ € CZ(x1,x2), i.e., an infinitely differentiable, compactly supported test function
on the interval (x1,x,), and consider the number

X2 X (x
n=no = [ote' e [ [ ff(x,y)(p'(x)dydx.

We can extend w, first by zero to the strip S = {(x,y)|x] <x < x2} (since p,q € C!),
then using a continuous extension operator to H'(R?) to obtain a new function ;
see, e.g., [1]. We have w|z = w and W|S\Z = 0. Likewise, by trivial extension of ¢,
we can consider ¢(x,y) = w(y)@(x) € C°(R?) where 7(y) a smooth function which
is uniformly one on [—K, K], and zero outside of [—K — 1,K + 1]. Then we have

n= [, P EDy)drdy = = [ Dy (x))p(x.y)dxdy

=~ [ 2wy (xy)o drdy

X2 rq(x)
N 7/ / ) 2w(x,y)w(x,y) dy@(x) dx.
x1 Jpx

Hence, @ has a weak derivative and it is given by ¢'(x) = f;((;)) 2ww,dy. If we use

w(x,y) =v(P(x,y))+/|Py| in (12), we recover e(x) as in (3). We thus obtain that e(x)
is weakly differentiable and that its weak derivative is

q(x)

P, - P
(DWg) (x) = e/(x) = /p (2‘)@)6 . VV|¢}| + V2 Y X,V> dy

Dy

)

Therefore, by adding and subtracting the appropriate term and using (9), (10), and
(11), we have
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e(xp)—e(x)) = /X2 e (x)dx

X1

X2 rq(x) v rqx) P, - P,
= / 2v€Dx~Vv|€Dy|dydx+/ Vv dydx
w o) w e Byl
v rq(x)
= s/ 2v(av) - Vv|®y|dydx (13)
X1 p(x)
X2 rq(x)
—l—/ / 2v(Py — sav) - Vv|Dy|dydx
x Jp(x) ’
X2 rq(x) P, - P,
+/2 V=2 gy dx,
x1 Jp(x) | Dy |
and thus
e(x2) —e(x1) > (Ca—Cy — Co) IVIIZ. (14)

Similarly, one obtains

e(x) —e(x1) < (Co+Cv +Co) V7
e(x2) < (C,+Cyv+Co+Cr)|vIE (15)
where Cr is the constant of the trace inequality from (H'(Q), || ||.) to L*(I3,).>
Combining (14) and (15), one obtains the desired inequality

e(x1)§(1 CazCy—Go >e(x2). O
C,+Cy+Co+Cr

If we use the estimates C, = C; — €C; and C,, = C; + €C,, we can make the
dependence of @ on € explicit:

Ci—eC,—-Cy,—(Cy

0w<l]l- <
- C4+eCr+Cy+Cy+Cr

so long as the numerator C; — eC, —Cy —Cy > 0.

We mention that in [10] a version of our Theorem 1 for a block Gauss-Seidel
algorithm is proved in the special case of a rectangular domain with ®@(x,y) = (x,y).
We also mention that, while we proved Theorem 1 in the plane, it also holds in higher
dimensions and on manifolds, under suitable hypotheses; see [10]. This is important
because one cannot rely, e.g., on conformal maps in dimensions higher than 2 to
prove results for general domains.

3 This trace inequality follows from the following argument: since p > 0 on I, there is
some neighborhood U of I3, such that p(x) > a > 0 everywhere in U. Then, [;;(Vv)? +
V< % Jo((Vv)? +12)p, and we use the Trace Theorem [2] for H' (U).
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3 Applications to Schwarz Methods

This maximum principle can be used to prove convergence of the classical Schwarz
iteration. If X is a domain in the plane and X = X; U X, is an overlapping domain
decomposition, and given uy € H& (X), the alternating Schwarz method is

(=V-aV+c)uyyjp=f inX;,

Uit j2 =0 ondX,
Uit jj2 = Ugs(j—1)2 ONIZ;NX5_j; (16)
with k = 0,1,2,... and j = 1,2. Obviously, the iteration converges
if the Dirichlet data (16) converge to zero in L*(d%;). Let vl(i)j 5=

0
k+j/2
Vir12ll2(05,) < VO|vellr2(a5,)- Similarly, if Theorem 1 holds with Q = X5, we

u be the error terms. By setting 2 = X; in Theorem 1, we see that

obtain that [|[ves1l12(95,) < VO Viy1/2]l12(5,)- Chaining these together, one obtains

Vi1 ll295,) < @lvell 25,

and so the classical Schwarz iteration converges, and the error is multiplied by @ at
every full iteration.

It is commonplace to use inexact solvers for the local problems, e.g., the multi-
grid algorithm. Such methods generate inner iterates: for each j,k, one obtains a
sequence uffl/ /2
iteration is typically stopped before the residual is zero. The inequality (7) is a con-

dition on the size of the residual. If the residual f — (—V-aV + c)ul(:izj /2 is small,
© (0

then for the error term, we have that (—V -aV + c)vkﬂ./2 is small, and so Verj2
(¢,a,c)-harmonic for some small £.° Hence, the Schwarz iteration is robust in the
sense that it will tolerate inexact local solvers.

Less obviously, a consequence of Theorem 1 is that the Optimized Schwarz
Method converges. To that end, we say that a domain decomposition for which The-
orem 1 holds for 2 = X; as well as Q = X, is said to be g-relatively uniform.

¢=1,2,... which converges to u; j/ in the limit. However, the

is

Theorem 2. Let € > 0 and assume that the domain decomposition is
g-relatively uniform. Then the Optimized Schwarz Method for the general elliptic
problem (1) converges geometrically for any Robin parameter ot > 0.

We prove this theorem in [10], but without the benefit of the € > 0 parameter. Al-
though we have not proved it, we hope that the robustness of the €-harmonicity con-
dition can be used to show that the Optimized Schwarz Method can also use inexact
local solvers.

6 If exact solvers are used, then (7) is verified with € = 0 and v = v. If an inexact solver is

used, then (7) can be used as a stopping criterion for v = Vl(ﬁj /2
solver can reach (7). If the inexact solver stops and (7) is not satisfied, it is possible for the

outer iteration to stagnate, never reaching an error of 0.

assuming that the inexact
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