
An Additive Neumann-Neumann Method for Mortar

Finite Element for 4th Order Problems

Leszek Marcinkowski

Department of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland,

Leszek.Marcinkowski@mimuw.edu.pl

Summary. In this paper, we present an additive Neumann-Neumann type parallel method for

solving the system of algebraic equations arising from the mortar finite element discretization

of a plate problem on a nonconforming mesh. Locally, we use a conforming Hsieh-Clough-

Tocher macro element in the subdomains. The proposed method is almost optimal i.e. the

condition number of the preconditioned problem grows poly-logarithmically with respect to

the parametes of the local triangulations.

1 Introduction

Many real life phenomenas and technical problems are modelled by partial differen-

tial equations. A way of constructing an effective approximation of the differential

problem is to introduce one global conforming mesh and then to set an approximate

discrete problem. However often it is required to use different approximation meth-

ods or independent local meshes in some subregions of the original domains. This

may allow us to make an adaptive changes of the local mesh in a substructure with-

out modifying meshes in other subdomains. A mortar method is an effective method

of constructing approximation on nonconforming triangulations, cf. [1, 13].

There are many works for iterative solvers for mortar method for second order

problem, see e.g. [2, 3, 6, 7] and references therein. But there is only a limited number

of papers investigating fast solvers for mortar discretizations of fourth order elliptic

problems, cf. [8, 10, 14].

In this paper, we focus on a Neumann-Neumann type of algorithm for solving

a discrete problem arising from a mortar type discretization of a fourth order model

elliptic problem with discontinuous coefficients in 2D. We consider a mortar dis-

cretization which use Hsieh-Clough-Tocher (HCT) elements locally in subdomains.

Our method of solving system of equations is a Neumann-Neumann type of algo-

rithm constructed with the help of Additive Schwarz Method (ASM) abstract frame-

work. The obtained results are almost optimal i.e. it shown that the number of CG

iteration applied to the preconditioned system grows only logarithmically with the

ratio H/h and is independent of the jumps of the coefficients.
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2 Discrete Problem

In this section, we introduce a model problem and discuss its mortar discretization.

We consider a polygonal domain Ω in the plane which is partitioned into disjoint

polygonal subdomains Ωk such that Ω =
⋃N

k=1 Ω k with Ω k∩Ω l being an empty set,

an edge or a vertex (crosspoint). We assume that these subdomains form a coarse

triangulation of the domain which is shape regular the sense of [5].

The model differential problem is to find u∗ ∈ H2
0 (Ω) such that

a(u∗,v) =

∫

Ω
f v dx ∀v ∈ H2

0 (Ω), (1)

where f ∈ L2(Ω),

H2
0 (Ω) = {u ∈ H2(Ω) : u = ∂nu = 0 on ∂Ω}

and

a(u,v) =
N

∑
k=1

∫

Ωk

ρk[ux1x1
vx1x1

+2 ux1x2
vx1x2

+ux2x2
vx2x2

]dx.

Here ρk are any positive constant and ∂n is a normal unit normal derivative.

A quasiuniform triangulation Th(Ωk) made of triangles is introduced in each sub-

domain Ωk, and let hk = maxτ∈Th(Ωk)
diam(τ) be the parameter of this triangulation,

cf. e.g. [4].

Let Γi j denote the interface between two subdomains Ωi and Ω j i.e. the open

edge that is common to these subdomains, i.e. Γ i j = Ω i ∩Ω j. We also introduce a

global interface Γ =
⋃

i ∂Ωi \∂Ω .

Fig. 1. HCT element.

We can now introduce local finite element spaces. Let Xh(Ωk), be the finite ele-

ment space defined as follows, cf. Fig. 1:

Xh(Ωk) = {u ∈C1(Ωk) : u ∈ P3(τi), τi ∈ Th(Ωk), for triangles τi,

i = 1,2,3, formed by connecting the vertices of

any τ ∈ Th(Ωk) to its centroid, and

u = ∂nu = 0 on ∂Ωk ∩∂Ω},
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where P3(τi) is the function space of cubic polynomials defined over τi.

Next a global space Xh(Ω) is defined as Xh(Ω) = ∏N
i=1 Xh(Ωk).

Each edge Γi j inherits two 1D triangulations made of segments that are edges

of elements of the triangulations of Ωi and Ω j, respectively. In this way, each Γi j

is provided with two independent and different 1D meshes which are denoted by

Th,i(Γi j) and Th, j(Γi j), cf. Fig. 2.

One of the sides of Γi j is defined as a mortar (master) one, denoted by γi j and the

other as a nonmortar (slave) one denoted by δ ji. Let the mortar side of Γi j be chosen

by the condition: ρ j ≤ ρi, (i.e. here, the mortar side is the i-th one).

For each interface Γi j two test spaces are defined: Mh
t (δ ji) the space formed by

C1 smooth piecewise cubic functions on the slave h j triangulation of δ ji, i.e Th, j(Γji),
which are piecewise linear in the two end elements, and Mh

n(δ ji) the space of con-

tinuous piecewise quadratic functions on the elements of triangulation of Th, j(Γji),
which are piecewise linear in the two end elements of this triangulation.

Γij

Ωi Ωj

γ
ij

δ ji

Fig. 2. Independent meshes on an interface.

The discrete space V h is defined as the space formed by all function in Xh(Ω),
which are continuous at the crosspoints, i.e. the common vertices of substructures,

and satisfy the following mortar condition on each interface Γi j = δ ji = γi j ⊂ Γ :

∫

δ ji

(ui−u j)ϕ ds = 0 ∀ϕ ∈Mh
t (δ ji), (2)

∫

δ ji

(∂nui−∂nu j)ψ ds = 0 ∀ψ ∈Mh
n(δ ji).

It is worth mentioning that u ∈ V h has discontinuous ∇u at a crosspoint cr, i.e.

∇u has as many values as the number of substructures with this crosspoint cr.

Our discrete problem is to find u∗h ∈V h such that

ah(u
∗
h,v) =

∫

Ω
f v dx ∀v ∈V h, (3)

where ah(u,v) = ∑N
k=1 ak(u,v) for
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ak(u,v) =
∫

Ωk

ρk[ux1x1
vx1x1

+2 ux1x2
vx1x2

+ux2x2
vx2x2

]dx.

This problem has a unique solution and for error estimates, we refer to [9].

3 Neumann-Neumann Method

In this section, we introduce our Neumann-Neumann method.

For the simplicity of presentation, we assume that our subdomains Ωk are trian-

gles which form a coarse triangulation of Ω .

We introduce a splitting of u ∈ Xk(Ωk) into two ak(·, ·) orthogonal parts: u = Pku

and discrete biharmonic part Hh = u−Pku, where Pku ∈ Xh,0(Ωk) is defined by

ak(Pku,v) = ak(u,v) ∀v ∈ Xh,0(Ωk)

with Xh,0(Ωk) = Xh(Ωk)∩H2
0 (Ωk). The discrete biharmonic part of u: Hku = u−

Pku ∈ Xh(Ωk) satisfies

{
ak(Hku,v) = 0 ∀v ∈ Xh,0(Ωk),

Tr Hku = Tr u on ∂Ωk,
(4)

where Tr u = (u,∇u). Let Hu = (H1u, . . . ,HNu) denotes the part of u∈ Xh(Ω) which

is discrete biharmonic in all subdomains. We also set

Ṽ h = HV h = {u ∈V h : u is discrete biharmonic in all Ωk} (5)

Each function in Ṽ h is uniquely defined by the values of all degree of freedoms

associated with all HCT nodal points i.e. the vertices and the midpoints, which are on

masters and at crosspoints since the values of the degrees of freedom corresponding

to the HCT nodes in the interior of a nonmortar (slave) are defined by the mortar

conditions (2) and that the values of the degrees of freedom of the nodes interior to

the subdomains are defined by (4).

3.1 Local Subspaces

For each subdomain Ωi, we introduce an extension operator Ei : Xh(Ωi)→ V h as

Eiu = Ẽiu+ P̂iu, where P̂iu = (0, . . . ,0,Piu,0, . . . ,0) and Ẽi : Xh(Ωi)→ Ṽ h is defined

as follows:

• Ẽiu(x) ∈ Ṽ h, i.e. it is discrete biharmonic in all subdomains,

• Ẽiu(x) = u(x) and ∇Ẽiu(x) = ∇u(x) and ∂nẼiu(m) = ∂nu(m) for an x a nodal

point (vertex) and a midpoint m of an element of Th,i(Γi j) for any mortar γi j ⊂
∂Ωi,

• ∇Ẽiu(v) = ∇u(v) for any vertex v of substructure Ωi,

• Ẽiu(cr) = 1
N(cr)

u(cr) for any crosspoint cr which is a vertex of ∂Ωi. Here, N(cr)

is the number of domains which have cr as a vertex.
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• Tr Ẽiu = 0 on remaining masters and at the crosspoints which are not on ∂Ωi.

The values of the degrees of freedom of Eiu on a slave are defined by the mortar

conditions (2) and in subdomains Ω j, j 6= i by (4).

We also have
N

∑
k=1

Ekuk = u

for any u = (u1, . . . ,uN) ∈V h.
We next define local spaces Vk = EkV

h
c (Ωk), where V h

c (Ωk) is the subspace of

Xh(Ωk) of functions that have zero values at all vertices of Ωk. Local bilinear forms

are defined over V h
c (Ωk) as bk(u,v) = ak(u,v). Note that u ∈Vk can be nonzero only

in Ωi and Ω j for a j such that Γi j is a common edge of Ωi and Ω j and its master side

is associated with Ωi.

3.2 Coarse Space

For any u = (u1, . . . ,uN) ∈ Xh(Ω), we introduce I0u ∈V h which is defined solely by

the values of u at crosspoints, i.e. the common vertices of substructures in Ω as

I0u =
N

∑
k=1

Ek(IH,kuk), (6)

where IH,kuk ∈ Xh(Ωk) is a linear interpolant of uk at the three vertices of a triangular

substructure Ωk.

Next let us define a coarse space as

V0 = I0V h,

and a coarse bilinear form

b0(u,v) =

(
1+ log

(
H

h

))−1

ah(u,v),

where H = maxk Hk for Hk = diam(Ωk), and h = mink hk. Note that the dimension

of V0 equals to the number of crosspoints.

We see that V h = V0 +∑N
k=1 Vk.

Next following the Additive Schwarz Method (ASM) abstract scheme, special

projection-like operators are introduced: Tk : Vk→V h for k = 0, . . . ,N by

b0(T0u,v) = ah(u,v) ∀v ∈V0 (7)

and let Tku = EkT̂ku for k = 1, . . . ,N, where T̂ku ∈V h
c (Ωk) is defined by

bk(T̂ku,v) = ah(u,Ekv) ∀v ∈V h
c (Ωk). (8)

The operator Tk is symmetric and nonnegative definite over V h in the terms of the

form ah(u,v).
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Finally, an ASM operator T : Vh→Vh is defined by

T = T0 +
N

∑
k=1

Tk.

We then replace problem (3) by a new equivalent one:

Tu∗h = g, (9)

where g = ∑N
k=0 gi and gi = Tiu

∗
h for u∗h the solution of (3).

The main result of this paper is the following theorem:

Theorem 1. For any u ∈V h, it holds that

c ah(u,u)≤ ah(Tu,u)≤C

(
1+ log

(
H

h

))2

ah(u,u),

where H = maxk Hk with Hk = diam(Ωk), h = mink hk, and c,C are positive constants

independent of all mesh parameters hk,Hk and the coefficients ρk.

Sketch of the Proof

We present here only a sketch of the proof which is based on the abstract ASM

scheme, cf. e.g. [12].

We have to check three key assumptions, cf. [12]. For our method the assumption

II (Strengthened Cauchy-Schwarz Inequalities), is satisfied with a constant indepen-

dent of the number of subdomains by a coloring argument.

Note that T0 is the orthogonal projection onto V0 (in terms of the bilinear form

ah(·, ·)) which is scaled by (1+ log(H/h))−1, i.e., we have

ah(u,u) = (1+ log(H/h))b0(u,u) ∀u ∈V0.

It can also be shown following the lines of proof of [11] that

ah(Eku,Eku)≤C1 (1+ log(H/h))2bk(u,u) ∀u ∈Vk,

where C1 is a constant independent of mesh parameters and subdomain coefficients.

Thus these two estimates yields that the constant ω in the assumption III (Local

Stability), is bounded by C1 (1+ log(H/h)2.

It remains to prove assumption I (Stable Decomposition), i.e., we have to prove

that there exists a positive constant C2
0 such that for any u ∈Vh there are w0 ∈V0 and

wk ∈Vk, k = 1, . . . ,N such that u = w0 +∑N
k=1 Ekwk and

b0(w0,w0)+
N

∑
k=1

bk(wk,wk)≤C2
0ah(u,u). (10)

We first define decomposition for u = (u1, . . . ,uN) ∈ V h. Let w0 = I0u and wk =
uk− Ih,kuk ∈V h

c (Ωk). Note that
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w0 +
N

∑
k=1

Ekwk = I0u+
N

∑
k=1

Ek(uk− Ih,kuk) =
N

∑
k=1

Ekuk = u.

Next, we see that

N

∑
k=1

bk(wk,wk) =
N

∑
k=1

ρk|uk− IH,kuk|2H2(Ωk)
(11)

=
N

∑
k=1

ρk|uk|2H2(Ωk)
= ah(u,u).

Again following the lines of proof of [11], we can show that

ah(I0u, I0u)≤C2
0(1+ log(H/h))ah(u,u),

where C2
0 is a constant independent of mesh parameters and subdomain coefficients,

thus

b0(w0,w0) = (1+ log(H/h))−1ah(I0u, I0u)≤C2
0 ah(u,u).

The last estimate and (11) yield us the bound in (10) and this concludes the sketch

of the proof.
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