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Summary. We aim in this paper to give a unified presentation to some important approaches

in multi-phase flow in porous media within the framework of multiscale methods. Thereafter,

we will present a modern outlook indicating future research directions in this field.

1 Introduction

Understanding flow in porous media is crucial in applications as diverse as petroleum

and geothermal energy recovery, ground water management, waste disposal (includ-

ing CO2) in geological formations, and the production of porous materials. Simulta-

neously, the mathematical and numerical challenges associated with accurate mod-

eling of the strongly non-linear governing equations are profound. Difficulties are

characterized by parameters which are anisotropic and discontinuous on all scales of

observation, while the solutions are nearly discontinuous and globally coupled even

for idealized homogeneous problems.

The equations for porous media flow have an elliptic-hyperbolic structure, where

the pressure is governed by an equation which is nearly elliptic, while the fluid sat-

uration is governed by an equation which is nearly hyperbolic. In applications, the

principle of mass conservation (which is embedded in both equations), is considered

essential. Thus efficient numerical solution techniques are needed which appropri-

ately handle discontinuous coefficients, while honoring mass conservation strictly

(see e.g. [3]).

Standard methods are often unsuitable under these circumstances. In terms of

spatial discretization, either control volume methods or mixed (or discontinuous) fi-

nite element methods are needed to enforce mass conservation in a strong sense [8].

The non-linearities and time dependencies lead to implicit discretizations (in partic-

ular for the pressure step). Finally, many of the challenges encountered by multi-grid

preconditioners in continuum fluid dynamics (see [6]) are present or even enhanced

in porous media (see e.g. [29]). Therefore, domain decomposition preconditioners

have become popular.
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In industrial petroleum recovery applications, it is common that the parameter

field (e.g. permeability), is given at a far higher resolution than what can be resolved

with the available computational resources. This has led to a large focus on upscal-

ing methods, and lately this effort has focused on multiscale methods. Frequently,

these methods show strong resemblance not only to upscaling, but also to domain

decomposition (see e.g. [25]).

We define by “multiscale” in this paper methods which deal with problems de-

fined at a resolution finer than what can be computationally resolved. In reality, this

defines two scales, that of the problem and that of the computational resolution, and

all the methods herein might well be labeled “twoscale”.

We will continue this paper by outlining a framework for classifying various

multiscale methods. Thereafter, we will discuss several methods from literature, and

identify their proper definition as a multiscale method. Our focus will not be on dis-

cussing abstract frameworks, but practical implementations. In particular, we will

discuss how permeability upscaling, relative permeability upscaling, and vertical

equilibrium formulations all can be seen as multiscale methods. We then give an

introduction to state of the art multiscale simulation. Finally, we summarize by giv-

ing examples indicating prospects for future developments.

2 A Framework for Discussing Multiscale Methods

There are several frameworks to discuss multiscale methods in. Some useful ap-

proaches are Volume Averaging [30], Systematic Upscaling [7] and Variational Mul-

tiscale [16]. We will herein use the terminology of the Heterogeneous Multiscale

Method (HMM) [12]. Similarities between these frameworks have been discussed

elsewhere [11].

Following the presentation of HMM [12], we recall that for a problem

f (u,d) = 0, (1)

where u is the unknown and d is data, we can postulate the exitence of a “coarse”

variable uD, which satisfies

F(uD,D) = 0. (2)

We will assume the functional form of F(uD,D) to be known, however the coarse

data D must be estimated from the fine scale model. The coarse and fine scale models

are associated through a compression (also referred to as interpolation) operator uD =
Qu, and some reconstruction (or extrapolation) operator RuD. Note that while we

require QR = I, the reverse does not in general hold.

Of particular interest to the remaing discussion is the finite element formulation

of HMM (HMFEM), which consideres minimization problems on the form: Denote

by u an element which minimizes

min
v∈V

A(v)−B(v) (3)
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for non-linear and linear forms A and B, respectively.

Consider the minimization problem given in Equation (3), and assume it has a

unique solution. By introducing a compression operator Q : V → VD, where VD is

some coarse scale solution domain, we have the minimization problem equivalent

to (3):

min
vD∈VD

min
v:Qv=vD

A(v)−B(v). (4)

We restrict the choice of compression operators under consideration such that also

(4) has a unique solution. We note that an ’exact’ reconstruction operator with respect

to the minimization problem can be defined from (4): ReuD solves

min
v:Qv=uD

A(v)−B(v). (5)

We now have the exact coarse scale HMFEM minimization problem

min
vD∈VD

A(RevD)−B(RevD). (6)

For practical purposes, calulating Re is excessively expensive, and an approxi-

mation is introduced; R̃≈ Re. It is usually advocated (see e.g. [12]) that since uD is

a macro-scale function, it should vary smoothly, thus it is sufficient to evaluate the

integrals appearing in the variational formulation at quadrature points. This allows

for great flexibility in localization strategies for approximating R̃.

3 A Model Problem for Multiphase Flow

The model equation for multiphase flow in porous media is the standard extension of

Darcy’s law to two phases α = {0,1} (see e.g. [5, 8, 19, 22]):

uα =−Kλα(∇p−ρα g). (7)

Here uα is the volumetric flux with units [L/T] , K is the intrinsic permeability of the

medium [L2], λα = λα(sα) is the phase mobility as a function of the phase saturation

sα [TLM−1], p is pressure [ML−1T−2], ρα = ρα(p) is phase density [ML3], and

finally g is the gravitational vector [LT−2], positive downwards. We have neglected

the difference between phase pressures, which is a common assumption at reservoir

scales [19].

The equations for flow satisfy conservation of mass for each phase

φ∂t(ρα sα) = ∇ · (ρα uα) = bα , (8)

where φ denotes the void fraction (porosity) [L0], which is kept constant is time, but

is allowed to vary in space, while bα represents source and sink terms [ML−3T−1].

We close the system by requiring that no more than two phases are present,

s0 + s1 = 1, (9)
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and assigning constitutive relationships:

K = K(x), φ = φ(x), λα = λα(sα). (10)

Note that we will frequently use the shorthand s = s0 and s = 1−s1 in the derivations.

In this work we will neglect compressibility.

The key difficulties in (7) and (8) lie firstly in the pronounced heterogeneity in

the permeability, which may be discontinuous and contain long-range correlations.

Further, the solution may contain shocks due to the non-linear relative permebility

functions.

A total pressure - fractional flow formulation is often used for (7)–(10) as this

formulation allows for the application of a splitting to exploit the (relatively) weak

time dependence of pressure [8]. We obtain a total pressure equation by eliminating

∂ts from (8):

∇ ·uT = bT (11)

uT = −KλT (∇p−ρT g). (12)

Equations (11) and (12) are written in two parts to retain the physical fluxes explic-

itly. This is important to get the mass conservation equation discretized correctly.

The flux, source, mobility and density are defined as:

bT = ∑
α

bα ρ−1
α , uT = ∑

α

uα , (13)

λT = ∑
α

λα , ρT = λ−1
T ∑

α

λα ρα .

The individual phase fluxes can be recovered from uT ;

uα = λα λ−1
T uT +λα λβ λ−1

T K(ρα −ρβ )g, (14)

where β = 1−α . Equations (11)–(14) together with either of (8) form an equivalent

system of equations to (7)–(10).

4 Some Upscaling Methods

In this section, we will investigate upscaling methods aimed at the two main dif-

ficulties outlined in our model multiphase flow equations: The heterogeity of the

permeability data and the heterogeneity of the saturation solution.

4.1 Permeability Upscaling

Upscaling of permeability by itself is essentially a single phase problem. As such,

it is analogous to many other problems in the physical sciences, including most fa-

mously heat conduction. Many strategies are applicable to this problem, particularly
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in the case where scale separation exists. We will herein consider a form of numeri-

cal homogenization popular in the porous media community. We recognize that per-

meability upscaling has previously been discussed within the framework of HMM

[2, 12], however the approach taken here is different.

Typically, in porous media, every coarse grid block is assigned a permeabil-

ity, based on fine scale flow properties. Depending on the level of complexity of

the coarse scale numerical solver, this permeability is either isotropic, anisotropic

aligned with the grid, or generally anisotropic.

The coarse block permeability is calculated by solving some fine scale problem.

The appropriate boundary conditions for this problem can be a cause of debate, but

for the sake of the argument, we follow [5] and use a linear potential (we need not

consider gravity when upscaling absolute permeability). The coarse permeability is

then calculated by postulating the existence of a coarse scale Darcy law for the grid

block

〈u〉=−KD

µ
〈∇p〉. (15)

Here < u > is the mean of the calculated velocity, and < ∇p > is (by Green’s the-

orem) a function of the boundary conditions. By varying the boundary conditions,

one can infer the coarse scale permeability KD.

We will avoid a lengthier discussion of upscaling methods for absolute perme-

ability, and consider how the approach taken above can be seen as within the frame-

work of the HMM.

Consider the following choice of discrete coarse scale variables: a potential vec-

tor pD and coarse permeability vector (or tensor) KD. We assume that the coarse scale

equations are some appropriate discretization of the elliptic equation on the coarse

scale grid, e.g. F(pD,KD) = 0. We define the compression for coarse cell Ωi as

pD,i = Qp =
1

L

∫

Ωi

pds,

where L is the arc length of the integral.

The constrained variational form of (5) for the fine scale HMM problem can then

be written [24]: Find p′ s.t. pD = Qp′ and

(K∇p′,∇q′) = 0 ∀ q′ s.t. 0 = Qq′. (16)

The data KD is then obtained from (15), subject to the additional constraint that the

anisotropy directions are known (e.g. aligned with the flow or the grid).

We see now that the classical permeability upscaling approach can be seen as

a localization of the global fine scale problem in the HMM. Indeed, if we use a

piecewise linear potential to impose pD = Qp′, and solve (16) separately on each

subdomain, we obtain exactly the numerical upscaling approach described earlier.

We emphasize that the intuitive, or one might say engineering, approach to up-

scaling permeability can thus be shown to be related to a multiscale modeling frame-

work. However, this relationship comes at a considerable cost: We have assumed

the existence of an equivalent homogeneous coarse scale permeability KD; defined
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a highly specialized compression operator; and subsequently made a very crude ap-

proximation to what is the known “true” fine scale problem. Indeed, we would en-

courage interpreting this section not in support of classical permeability upscaling,

but rather as a critique pointing out the expected weaknesses.

The observations regarding potential problems with permeability upscaling are

not new, and they have previously motivated what is known as transmissibility up-

scaling for finite volume methods (see e.g. [10, 20]). With this approach, the coarse

scale is assumed to satisfy a discrete conservation law of the form

fD =−BpD; −CfD = bD. (17)

Here, fD and bD are the coarse fluxes and sources, while B and C are sparse ma-

trices representing conductivity and mass conservation, respectively. The mass con-

servation matrix C is known, and an upscaling approach is used to determine the

coefficients of B.

We note that from a general perspective, permeability upscaling and transmissiv-

ity upscaling are closely related, and the previous remarks about the relationship to

a HMM framework apply also to transmissibility upscaling. The case of transmis-

sivity upscaling is discussed in more detail in [13]. Our main point of including the

transmissivity upscaling, is to show how the macroscale model may be either dis-

crete a posteriori, as in the case of permeability upscaling, or a priori as in the case

of transmissivity upscaling. Note that the advantage of an a priori discrete model in

this case is that no explicit assumptions are made on a macroscale permeability KD

4.2 Saturation Upscaling

The second challenge of porous media upscaling is the saturation equation. We will

here outline the industry standard perspective.

As with the permeability, we assume the existence of a macroscale extension

of Darcy’s law. This macroscale extension can as in the previous section be either

continuous or discrete; for the sake of the argument we will make assumption that it

is continuous, e.g.:

〈uα〉=−kD,α(sD,α)
KD

µα
〈∇pα〉. (18)

Here sD is the macroscale saturation, while kD is the macroscale relative permeabil-

ity. The compression operator for the macroscale saturation must for mass conserva-

tion reasons be defined simply as the cell average saturation.

Applying a similar approach to the permeability upscaling case, one obtains the

following rather interesting observations: Firstly, the results are highly sensitive to

how one treats the coarse scale potential gradient term [27]. Secondly, the results

are (as expected), influenced by imposed boundary conditions. Finally, and more im-

portantly, we note that in analog to permeability upscaling where we saw induced

anisotropy at the coarse scale (even without anisotropy at the fine scale), for satura-

tion upscaling we see a strong history dependence on the coarse scale, even when

none is present at the fine scale.
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From a HMM perspective, we first observe that for the hyperbolic part, these

simple approaches are variants of a Godunov method. This allows us to make a more

natural interpretation of the hysteresis point: While saturation has a unique com-

pression operator, the problem unfortunately has a strong dependence on the degrees

of freedom in the reconstruction operator. Indeed, the problem is that the upscaling

method described above aims at being more accurate than a naive first order Godunov

method, but the price then becomes selective accuracy, depending on the quality of

the reconstruction.

4.3 Vertically Integrated Models

For some porous media applications, such as saltwater intrusion [5] and storage of

CO2 in saline aquifers, vertically integrated models may be applicable [14, 28]. The

features allowing a successful application of such a formulation are the dominance of

horizontal length scales over vertical length scales, combined by gravity segregation

in the systems.

The key concept behind vertically averaged models is to consider equations for

an interface between the two fluids resulting from gravity segregation. By integrating

over the vertical direction, we obtain governing equations for the interface, which are

essentially 2D conservation equations combined by flux functions involving integrals

over the vertical direction;

F =

∫
f dz. (19)

These integrals contain subscale information through the explicit dependence on the

vertical solution structure. To apply this formulation, effective approximations must

be introduced regarding the vertical structure of the pressure field in addition to that

of segregated fluids. Common choices are vertical equilibrium (the Dupuit approxi-

mation), although more complex choices are possible [26].

Let us consider this approach again within the framework of a multiscale method-

ology. The scale assumption is that the vertical scales are short, and the associated

time scale of equilibration are short. To honor mass conservation, the compression

operator taking saturation to interface thickness is vertical integration. A compres-

sion operator for the pressure can be taken as the pressure at the bottom of the domain

(as in the above references). Following the assumption of short equilibration time in

the vertical direction, and reconstruction of initial conditions for a fine scale solver

will lead to a vertically segregated, fluid-static system. We will therefore simply as-

sume that the reconstruction operator is the fluid-static distribution. The combined

operator RQ will be exact for problems where the fine scale indeed is vertically seg-

regated.

It is interesting to note how the Dupuit approximation in the vertically integrated

model appears immediately with the multiscale framework. Also worth noting is how

HMM provides an abstract framework for discussing this approximation beyond the

ususal asymptotic arguments.

We conclude this section by reiterating the purpose of these examples. Through

relating well established concepts to a common framework, we hope to achieve two
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aims: Firstly, to provide a unified way of considering physical based (as opposed

to strictly numerical) upscaling methods. Secondly, to build support for HMM (or a

similar multiscale design) as a general framework to guide upscaling methods.

5 Multiscale Numerical Methods

In this section, we will expand upon the ideas from the previous section, and discuss

newer methods gaining interest in porous media. In particular we will discuss a class

of numerical methods, which term themselves also multiscale methods, which aim

at creating approximate solutions on a coarse scale, retaining a physically plausible

fine scale structure. The methods discussed here primarily address the pressure equa-

tion, which due to ellipticity is the harder equation, while the saturation equation is

resolved on a fine scale [1, 4, 17, 23]. While these methods have much in common

with domain decomposition [9, 25], they differ in the focus on fast approximations

to the fine scale problem which are physically plausible, rather than the solution to

the fine scale problem itself. We will focus in particular on the so-called variational

multiscale methods, the general ideas are similar between the formulations.

5.1 The Variational Multiscale Method

The Variational MultiScale (VMS) Method is a general approach to solving partial

differential equations [15, 16]. While more specialized in approach than the HMM,

we see in VMS a sharper focus on the nature and structure of the fine scale problems.

When applied in a similar manner, it can be shown that VMS can be considered a

special case of HMM [24].

We therefore consider: Find u ∈U such that

a(u,v) = b(v) ∀ v ∈V. (20)

We take a and b to be bilinear and linear operators, respectively. Although in general

the spaces U and V may be different, we will here use U = V .

Hughes et. al discuss finite element approximations in terms of the following

argument: Let V ′ be defined such that VH ⊕V ′ = V , noting that in general VH and V ′

need not be orthogonal. Then the following coupled problems are equivalent to (20):

Find uH ∈VH and v′ ∈V ′ such that

a(uH ,vH)+a(u′,vH) = b(vH) ∀ vH ∈VH (21)

and

a(uH ,v′)+a(u′,v′) = b(v′) ∀ v′ ∈V ′, (22)

The term a(u′,vH) can be quanitified by representing u′ in terms of a Green’s

function for the original problem constrained to the space V ′ [15]. Thus, we can

write the solution of (22) formally as
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u′ =−G′(b−LuH), (23)

where b−LuH is the residual error of the approximate solution uH to the underlying

PDE:

Lu−b = 0, (24)

and G′ is an integral Green’s transform, where the kernel is simply the Green’s func-

tion in V ′. By combining (22) and (23), we obtain the finite dimensional variational

problem: Find uH ∈VH such that

a(uH +G′(uH),vH) = b(vH)+a(G′(b),vH) ∀ vH ∈VH . (25)

This equation is refered to as a paradigm for multiscale simulation [16].

5.2 A VMS Approach for the Implicit Time-Discretized Pressure Equation

We consider the following coupled partial differential equations, which serve as a

prototype for the pressure equation in porous media flow.

∇ ·u = b in Ω , (26)

u+d(∇p− c) = 0 in Ω , (27)

u ·ν = 0 on ∂Ω . (28)

We consider for simplicity only zero Neumann (no-flow) boundaries. These bound-

ary conditions are prevailing in applications. On variational form, the mixed problem

can be stated as: Find p ∈W and u ∈ V such that

(∇ ·u,w) = (b,w) ∀ w ∈W, (29)

(d−1u,v)− (p,∇ ·v) = (c,v) ∀ v ∈ V. (30)

The permeability is a symmetric and positive definite matrix, justifying the inverse

used in (30). The mixed space V must honor the boundary condition.

Given (29) and (30), we are prepared to introduce our VMS method. Thus, let W

and V be direct sum decompositions W = WH ⊕W ′ and V = VH ⊕V′. Our coarse

scale variational problem is thus: Find pH ∈WH and uH ∈ VH such that

(∇ · (uH +G′u(∇ ·uH ,∇pH +d−1uH)),wH)

= (b+∇ ·G′u(b,c),wH) ∀ wH ∈WH

(31)

and

(d−1(uH +G′u(∇ ·uH ,∇pH +d−1uH),vH)

− (pH +G′p(∇ ·uH ,∇pH +d−1uH),∇ ·vH)

= (c+d−1G′u(b,c),vH)− (G′p(b,c),∇ ·vH) ∀ v ∈ V.

(32)

The integral operators G′p ∈ W ′ and G′u ∈ V′, which we will refer to as Green’s

transforms, are the formal solutions to the following (linear) equations:
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(∇ ·G′u(g, f),w′) = (g,w′) ∀ w′ ∈W ′, (33)

(d−1G′u(g, f),v′)− (G′p(g, f),∇ ·v′) = (f,v′) ∀ v′ ∈ V′. (34)

We note that in (31) and (32), we need the Green’s transforms evaluated for all

members of the spaces WH and VH . Since (33) and (34) are linear, it suffices to

evaluate (or approximate, as the case will be) G′p and G′u for a set of basis functions

for WH and VH , in addition to the right hand side components b and c.

To proceed further, it is necessary to make an appropriate choice of spaces WH ,

VH , W ′ and V′. This will not be elaborated here, alternative choices can be found in

e.g. [4, 18, 21, 23].

6 Conclusions

In this paper we have made an initial attempt at bringing together diverse approaches

to upscaling for multiphase porous media flow problems under the umbrella of multi-

scale methods. The goal has not been to complete a comprehensive survey, but rather

to illustrate how key ideas can be related.

We have considered upscaling, both static and dynamic; vertically integrated for-

mulations; and modern multiscale simulation. While there is still work to be done

before these approaches can be presented seamlessly, we hope that the current expo-

sition will allow the reader to appreciate the subtle similarities.
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