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1 Introduction

In this paper, a new solution methodology based on the FETI-2LM method for non

conforming grids is introduced. Thanks to the regularizing properties of the Robin

interface matching conditions of the FETI-2LM method, each non conforming con-

dition can be localized inside one subdomain, in such a way that the FETI-2LM

method applies exactly in the same way as in the conforming case.

The paper is organized as follows: section 2 recalls the principle of FETI-2LM

method, section 3 briefly describes the mortar method for non conforming domains,

the new methodology for localizing the multi-point constraints on the non conform-

ing interface derived from the mortar method is introduced in section 4 and section 5

generalizes the methodology in the case of multi-level splitting of a mesh including

a non conforming interface.

2 FETI-2LM method

2.1 Discrete Approach

Consider the linear problem Kx = b arising from a finite element discretization of

a PDE. The mesh of the entire domain is split in two meshes like in Fig.1, the two

subdomains are denoted by Ω1 and Ω2, and their interface by Γ3. Then, the global

stiffness matrix and right hand sides have the following block structure:

K =




K11 0 K13

0 K22 K23

K31 K32 K33


 , b =




b1

b2

b3


 (1)

and the subdomain stiffness matrices and right hand sides are:

K1 =

[
K11 K13

K31 K
(1)
33

]
, y1 =

[
b1

b
(1)
3

]
K2 =

[
K22 K23

K32 K
(2)
33

]
, y2 =

[
b2

b
(2)
3

]
(2)
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Ω1 Ω2

Γ3

Fig. 1. Two meshes with interface.

with K
(1)
33 +K

(2)
33 = K33 and b

(1)
3 +b

(2)
3 = b3.

The FETI-2LM method [3] is based on introducing independent generalized

Robin boundary conditions on interface Γ3. Discretized local Robin problem takes

the following form:

[
Kii Ki3

K3i K
(i)
33 +A

(i)
33

][
xi

x
(i)
3

]
=

[
bi

b
(i)
3 +λ

(i)
3

]
(3)

To be the restrictions in the subdomains of the solution of the global problem, the

solutions of the local problems must first satisfy the discrete continuity condition:

x
(1)
3 − x

(2)
3 = 0 (4)

The second interface matching condition, that is a discrete condition of equilib-

rium, is nothing else than the last row of the global discrete system:

K31x1 +K32x2 +K33x3 = b3 (5)

Note that these two conditions can be derived by simple algebraic manipulation

from any linear system of equations whose matrix has the block form of (1).

Given the splitting of block matrix K33 and of vector b3, the discrete equilibrium

equation (5) can be rewritten as:

K31x1 +K32x2 +K
(1)
33 x

(1)
3 +K

(2)
33 x

(2)
3 = b

(1)
3 +b

(2)
3 (6)

Since the last row of the discrete Robin problem (3) gives:

K3ixi +K
(i)
33 x

(i)
3 +A

(i)
33x

(i)
3 = b

(i)
3 +λ

(i)
3 (7)

equation (6) can be alternatively written as:

A
(1)
33 x

(1)
3 +A

(2)
33 x

(2)
3 = λ

(1)
3 +λ

(2)
3 (8)

Finally, the two discrete interface conditions (4) and (8) can be combined to give

the equivalent mixed equations:
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A
(1)
33 x

(2)
3 +A

(2)
33 x

(2)
3 = λ

(1)
3 +λ

(2)
3

A
(1)
33 x

(1)
3 +A

(2)
33 x

(1)
3 = λ

(1)
3 +λ

(2)
3

(9)

By eliminating inner unknowns in the discrete Robin problem (3), the relation

between the trace of the solution on interface x
(i)
3 and the discrete augmented flux

λ
(i)
3 can be explicitly computed:

(K
(i)
33 −K3iK

−1
ii Ki3 +A

(i)
33)x

(i)
3 = λ

(i)
3 +b

(i)
3 −K3iK

−1
ii bi (10)

Denote by S(i) = (K
(i)
33 −K3iK

−1
ii Ki3), the Schur complement matrix and by c

(i)
3 =

b
(i)
3 −K3iK

−1
ii bi, the condensed right-hand-side.

Replacing x
(1)
3 and x

(2)
3 by their values as function of λ

(1)
3 and λ

(2)
3 derived from

equation (10) in the mixed interface equations (9), leads to the condensed interface

problem associated to the FETI-2LM method:

[
I I− (A

(1)
33 +A

(2)
33 )(S(2) +A

(2)
33 )−1

I− (A
(1)
33 +A

(2)
33 )(S(1) +A

(1)
33 )−1 I

][
λ

(1)
3

λ
(2)
3

]

=

[
(S(2) +A

(2)
33 )−1c

(2)
3

(S(1) +A
(1)
33 )−1c

(1)
3

]
(11)

2.2 Optimal Interface Operator

FETI-2LM method consists in solving the condensed interface problem (11) via a

Krylov space method. Of course, the gradient is not computed using explicit formula

(11) but using the implicit one (9) where x
(1)
3 and x

(2)
3 are computed by solving the

local Robin problems (3).

The main ingredient for the method to be effective is the choice of the operator

A
(i)
33 associated with the generalized Robin condition. Analysis of the condensed in-

terface problem (11) clearly shows that the optimal choice consists in taking in each

subdomain the Schur complement of the rest of the domain:

A
(1)
33 = S(2) A

(2)
33 = S(1) (12)

With such a choice, the matrix of the condensed interface problem (11) in the 2-

subdomain case is simply the identity matrix and the method is then a direct solver.

In practice the Schur complement is of course too expensive to compute and,

since it is a dense matrix, using it would also give a very large bandwidth to the stiff-

ness matrices of the local generalized Robin problems. Sparse approximation of the

Schur complement must be used. A purely algebraic methodology has been devel-

oped in [5]. It consist in building the approximate Schur complement by assembling

exact Schur complements computed on small patches along the interface.
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3 Mortar Method

Lagrange multiplier based domain decomposition methods have been extended to the

case on non-conforming meshes, especially with the mortar method [1]. At the con-

tinuous level, the principle of the method consists in introducing a weak formulation

of the interface continuity condition:
∫

Γ3

(u1−u2)µ = 0 ∀ µ ∈W (13)

where ui is the solution in subdomain Ωi of the continuous PDE and W is a suitable

set of Lagrange multipliers.

Ω1
Γ3 Ω2

Fig. 2. Non-conforming interfaces.

For the discrete non-conforming case, optimal approximation results have been

proved for elliptic second order PDEs when W is the mortar space of one of the two

neighboring subdomains.

For instance, for a 2-D problem and linear finite element space V , the mortar

space is a subset of the set of the traces on interface Γ of functions belonging to V ,

consisting of functions that are piecewise constant on the last segments of Γ , like in

Fig. 3.

Γ

Tr(u) ∈ Tr(V )

λ ∈ W

Fig. 3. Mortar space in 2-D for linear elements.

Suppose that, like in Fig. 2, the mortar side is Ω1, then the global mixed prob-

lem associated with the weak formulation (13) of the continuity constraint takes the

following discrete form:



K1 0 Bt
1

0 K2 Bt
2

B1 B2 0






ξ1

ξ2

λ


=




y1

y2

0


 with ξ1 =

[
x1

x
(1)
3

]
, ξ2 =

[
x2

x
(2)
3

]
, (14)
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B1 = M31R1 and B2 =−M32R2. The Ri matrix is the restriction from subdomain Ωi

to its interface ∂Ωi, and the M3i matrix is the mass matrix obtained by integration

of products of mortar basis functions (living on Γ3) and traces on ∂Ωi of the basis

functions of Vi associated with the degrees of freedom of ∂Ωi.

The FETI method can be applied for solving the global problem (14) [4]. The

only difference with the conforming FETI method lies in the fact that, since the

Bi matrices are not signed boolean matrices any more, the preconditioning phase

must include a scaling taking into account the inhomogeneity induced by the Bi

matrices [2].

4 A FETI-2LM Method for Non-conforming Interfaces

In order to avoid dealing with non-conforming interfaces, the multi-point constraints

associated with the discrete weak continuity condition:

B1ξ1 +B2ξ2 = 0 (15)

may be included inside one subdomain. This means that the targeted subdomain must

annex the interface degrees of freedom of the neighboring subdomain. In the case of

Fig. 4, it is subdomain Ω2. The opposite choice could be made as well.

Ω1 Ω2Γ3
Γ3

Fig. 4. Inclusion of non-conforming interface in one subdomain.

Then the actual interface between subdomain Ω1 and extended subdomain Ω2 is

conforming and the weak condition (15) gives multi-point constraints for inner de-

grees of freedom of extended subdomain Ω2. This means that the new local stiffness

matrices are:

[
K1

]



0 0 Mt
31

0 K2 Bt
2

M31 B2 0


 (16)

The restriction matrix R1 is not present in the mixed matrix of the extended sub-

domain Ω2 since only the interface degrees of freedom of Ω1 have been annexed.
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The main apparent issue with this approach is the fact that the matrix of the

extended subdomain Ω2 is highly singular since the annexed degrees of freedom have

no stiffness. But, thanks to the generalized Robin conditions on the interface with the

FETI-2LM method, each local stiffness matrix is augmented by an approximation of

the Schur complement on the interface of the stiffness matrix of the neighboring

subdomain:

S(1) = K
(1)
33 −K31K−1

11 K13 S(2) =
[

0 Mt
31

][K2 Bt
2

B2 0

]−1 [
0

M31

]
(17)

If A
(1)
33 ≈ S(2) and A

(2)
33 ≈ S(1) are approximations of the Schur complements de-

fined in equation (17), the augmented stiffness matrices of the generalized Robin

problems of the FETI-2LM method are:

[
K1 +Rt

1A
(1)
33 R1

]



A
(2)
33 0 Mt

31

0 K2 Bt
2

M31 B2 0


 (18)

None of these matrices is singular any more, in the case where A
(1)
33 = S(2) and

A
(2)
33 = S(1), since they are obtained by eliminating unknowns of Ω2 or inner un-

knowns of Ω2, in the well posed global problem (14). The same property holds in

general, provided that A
(1)
33 and A

(2)
33 are consistent enough approximations of S(2)

and S(1).

The procedure developed in [5] for computing algebraic approximation of the

Schur complement applies without any modification to the case where the local ma-

trix has a mixed form, like the matrix of the extended subdomain Ω2 in (17).

5 Localization of Non-conforming Interface Matching Conditions

In most cases, non-conforming interfaces exist only for engineering or geometri-

cal reason in a limited area of the computational domain. There can be only one

non-conforming interface which splits the entire domain into two unbalanced sub-

domains. In order to get enough subdomains for the domain decomposition solver

to be efficient, each initial non-conforming domain must be split into smaller subdo-

mains in such a way that the total number of subdomains is large enough and that the

subdomains are balanced.

Therefore, the initial non-conforming interface may be split into several inter-

faces. Since each non-conforming interface matching conditions couples several de-

grees of freedom on each side of the interface, it frequently happens that a multi-point

constraint associated with a mortar Lagrange multiplier involves degrees of freedom

located in more than one subdomain on each side of the non-conforming interface.

This leads to a very serious implementation issue since the FETI methods require

that each interface connects one subdomain only on each side.
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A solution consists in localizing all degrees of freedom associated with a mortar

Lagrange multiplier on each side of the non conforming interface to a single subdo-

main. This means that some degrees of freedom must be annexed by one neighboring

subdomain located on the same side of the non-conforming interface, like in Fig. 5,

in which Ωi j denotes jth subdomain arising from the splitting of initial domain Ωi.

Ω11
Γ3 Ω21

Ω12 Ω22

Fig. 5. Localization of non-conforming interface degrees of freedom.

Once again, this procedure adds degrees of freedom with no stiffness, e.g., sub-

domain Ω11. But the generalized Robin boundary condition on the conforming in-

terface between Ω11 and Ω12 adds the necessary regularizing terms. And since the

FETI-2LM method ensures exact continuity of the solutions along a conforming in-

terface, the value of the solution in Ω11 for the annexed degrees of freedom of Ω12

is exactly the same as in Ω12.

Thanks to this technique, the initial single non-conforming interface can be split

into several non-conforming interfaces, each of them coupling only one subdomain

on each side. Therefore, the methodology introduced in section 4 can be applied on

each of them.

6 Conclusion

The methodology presented in this paper allows the localization of each multi-point

constraint associated with non-conforming interface matching conditions in one sub-

domain. This localization is to be made in a pre-processing phase. It allows any

multi-level splitting of a mesh including a non-conforming interface without any

modification in the formulation of the non conforming interface matching condi-

tions.

Thanks to this localization, the FETI-2LM method with the automatic algebraic

computation of approximate optimal generalized Robin interface conditions can be

implemented without any change from the standard conforming case.

This methodology has been successfully implemented for test problems. Com-

parison must be made now, in term of convergence speed, between this new non-

conforming FETI-2LM method and the classical non-conforming FETI-1LM.
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