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1 Convex State Constrained Optimal Control

In this note, we extend the mathematical framework in [7] of barrier methods for

state constrained optimal control problems with PDEs to a more general setting.

In [7] we modelled the state equation by Ly = u with L a closed, densely defined,

surjective operator. This restricts the applicability of our theory mainly to certain

distributed control problems. Motivated by the discussion in [6], we consider in this

work operator equations of the more general form Ay−Bu = 0, where A is closed,

densely defined and with closed range and B is continuous. While this change in

framework only neccessitates minor modificatios in the theory, it extends its appli-

cability to large additional classes of control problems, such as boundary control and

finite dimensional control.

To make this paper as self contained as possible, assumptions and results of [7]

are recapitulated, but for brevity proofs and more detailed information are only given

when there are differences to [7]. This is possible, because our extension has only a

very local effect.

Let Ω be an open and bounded Lipschitz domain in Rd and Ω its closure. Let

Y := C(Ω) and U := L2(Q) for a measurable set Q, equipped with an appropri-

ate measure. Standard examples are Q = Ω with the Lebesgue measure for dis-

tributed control, Q = ∂Ω with the boundary measure for boundary control and

Q = {1,2, . . . ,n} with the counting measure for finite dimensional controls.

Define X := Y ×U with x := (y,u) and consider the following convex minimiza-

tion problem, the details of which are fixed in the rest of Section 1.

min
x∈X

J(x) s.t. Ay−Bu = 0

u≤ u≤ u, y≤ y≤ y.
(1)

We will now specify our abstract theoretical framework and collect a couple of basic

results about this class of problems.
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1.1 Linear Equality Constraints

By the equality constraint Ay−Bu = 0 we model a partial differential equation (cf.

Section 1.3 below).

Assumption 1 Let R be a Banach space. Assume that B : U → R is a continuous

linear operator and that A : Y ⊃ domA→ R is a densely defined and closed linear

operator with a closed range.

Assume that there is a finite dimensional subspace V ⊂U of essentially bounded

functions on Q, such that R = ranA⊕B(V ), i.e., for each r ∈ R there are unique

rY ∈ ranA and rV ∈ B(V ) with r = rY + rV .

Closed operators are a classical concept of functional analysis. For basic results

we refer to [9, Kapitel IV.4] for more details, see [5]. In many applications A is

bijective, i.e., the equation Ay = r has a unique solution y for all r ∈ R. However,

there are several important cases (such as pure Neumann problems), where only a

Fredholm alternative holds while the corresponding optimal control problems are

still well posed. Introduction of V includes these cases. If A is surjective, then V =
{0}. Consider now the operator

T : Y ×U ⊃ domA×U → R

(y,u) 7→ Ay−Bu.
(2)

From our assumptions it can be shown easily that T is densely defined, closed and

surjective. Since T is closed, E := kerT is a closed subspace of X .

By density of domA in Y , we can define an adjoint operator A∗. For every l ∈ R∗

the mapping y→ 〈l,Ay〉 is a linear functional on domA. We define domA∗ as the

subspace of all l ∈ R∗ for which y→ 〈l,Ay〉 is continuous on domA and can thus

by density be extended uniquely to a continuous functional on Y . Hence, for all

l ∈ domA∗ there is a unique A∗l ∈ Y ∗ for which 〈l,Ay〉= 〈A∗l,y〉 ∀y ∈ domA. This

defines A∗ : R∗ ⊃ domA∗→ Y ∗.

1.2 Inequality Constraints and Convex Functionals

The inequality constraints in (1) are interpreted to hold pointwise almost everywhere

and define a closed convex set of G⊂ X . Some of the inequality constraints may not

be present.

Assumption 2 Assume that E = kerT is weakly sequentially compact. Assume that

there is a strictly feasible point x̆ = (y̆, ŭ) ∈ E, which satisfies

0 < dmin := ess inf
t∈Ω

min{ŭ(t)−u(t),u(t)− ŭ(t), y̆(t)− y(t),y(t)− y̆(t)}. (3)

Assume that J : X→R := R∪{+∞} is lower semi-continuous, convex, and coercive

on the feasible set E∩G, that J is continuous at x̆ (cf. (3)) and that its subdifferential

∂J is uniformly bounded in X∗ on bounded sets of X.
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Weak sequential compactness of E can usually shown by taking into account slightly

stronger regularity properties of A. Often domA is contained in a reflexive (Sobolev)-

Space.

Denote by χC(x) the indicator function of a set C ⊂ X , which vanishes on C and

is +∞ otherwise. Then we can rewrite (1) as an unconstrained minimization problem

defined by the functional:

F : X → R := R∪{+∞}
F := J + χE + χG.

(4)

By our assumptions F is a lower semi-continuous, convex, and coercive functional

with a non-empty domain and does thus admit a minimizer by weak compactness of

E (cf. e.g. [4, Prop. II.1.2]).

Assumption 3 Assume that F is strongly convex (w.r.t. some norm ‖·‖):

∃α > 0 : α ‖x− y‖2 ≤ F(x)+F(y)−2F

(
x+ y

2

)
∀x,y ∈ domF (5)

Usually, optimal control problems with Tychonov regularization satisfy (5).

1.3 Example: A class of Elliptic PDEs

To illustrate our theoretical framework, we consider a class of elliptic PDEs, which

was analysed by Amann [1] in an even more general framework.

Let Ω be a bounded domain in Rd with a smooth boundary Γ . Let a∈C(Ω ,Rd×d),
b,c ∈C(Ω ,Rd), a0 ∈ L∞(Ω), b0 ∈C(Γ ). Assume that a is symmetric positive def-

inite, uniformly in Ω . Denote by γ(·) : W 1,s → L2(Γ ) the boundary trace operator,

which exists continuously if s > 3/2. For 1 < q < ∞ and 1/q+1/q′ = 1 consider the

following continuous elliptic differential operator in the weak formulation:

A : W 1,q(Ω)→ (W 1,q′(Ω))∗

〈Ay, p〉 :=
∫

Ω
〈a∇y+by,∇p〉+ 〈∇y,cp〉+a0 ypdt +

∫

Γ
b0 γ(y)γ(p)ds. (6)

Let f ∈ (W 1,q′(Ω))∗. By [1, Theorem 9.2] a Fredholm alternative holds for the solv-

ability of the equation Ay = f . This means that either it is uniquely solvable, or the

homogenous problem has a finite dimensional space of nontrivial solutions with ba-

sis vectors wi ∈W 1,q(Ω). Then there is a finite number of conditions 〈wi, f 〉 = 0

under which Ay = f is non-uniquely solvable. This implies that A has a closed range

with finite codimension and a kernel of the same dimension. In case of solvability,

we have (cf. [1, 9.3(d)]):

‖y‖W 1,q ≤C(‖ f‖
(W 1,q′ )∗ +‖y‖(W 1,q′ )∗). (7)

If q > d, then by the Sobolev embedding theorems W 1,q(Ω) →֒ C(Ω) and we

may redefine A as an unbounded operator
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A : C(Ω)⊃W 1,q(Ω)→ (W 1,q′(Ω))∗.

Since C∞(Ω) is dense in C(Ω), A is densely defined, and closedness of A follows

easily from (7), continuity of the embedding W 1,q(Ω) →֒ C(Ω), and closedness of

ranA. Hence, setting Y := C(Ω), R := (W 1,q′(Ω))∗, and domA := W 1,q(Ω), A fits

into our framework. Its adjoint operator

A∗ : W 1,q′(Ω)⊃ domA∗→C(Ω)∗.

is defined by 〈y,A∗p〉= 〈Ay, p〉 via the right hand side in (6). This expression is well

defined for all y ∈ domA = W 1,q(Ω), and domA∗ is the set of all p, for which 〈Ay, p〉
is continuous on domA with respect to ‖y‖∞ and have thus a unique continuous

extension to an element of C(Ω)∗.
By the choice of B we select how the control acts on the state. Two examples are

distributed control

BΩ : L2(Ω)→ (W 1,q′(Ω))∗ 〈BΩ u, p〉 :=
∫

Ω
u · pdt,

and Neumann or Robin boundary control

BΓ : L2(Γ )→ (W 1,q′(Ω))∗ 〈BΓ u, p〉 :=
∫

Γ
u · γ(p)ds.

If q′ < d/(d− 1) is chosen sufficiently large, BΩ is continuous by the Sobolev em-

bedding theorem for d ≤ 3 and BΓ is continuous by the trace theorem for d ≤ 2.

If d = 3, then γ : W 1,q′ → L2(Γ ) is not continuous and thus the case d = 3 is not

included in our framework for BΓ . This has been a principal problem for the analysis

(not only for barrier methods) of state constrained optimal control problems (cf. e.g.

[3]). However, in [8] new techniques have been developed to overcome this restric-

tion, which are likely to carry over to the analysis of barrier methods.

If Ay = f is not uniquely solvable, then we have to assert that u ∈ U can be

split into u = uY + uV , such that 〈wi,BuY 〉= 0 and uV ∈ L∞. Since all wi ∈W 1,q are

bounded, such an uV can easily be constructed from these wi in our cases B = BΩ

and B = BΓ .

2 The Homotopy Path and its Properties

We analyse the main properties of the homotopy path of barrier regularizations. For

brevity, we give only proofs here, when they differ from [7].

Definition 1. For all q≥ 1 and µ > 0 the functions l(z; µ) : R+→ R

l(z; µ) :=





−µ ln(z) : q = 1

µq

(q−1)zq−1
: q > 1

are called barrier functions of order q. We extend their domain of definition to R by

setting l(z; µ) = ∞ for z≤ 0.
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Their derivatives can be computed as l′(z; µ) = −µqz−q. Bounds like z ≥ z and

z≤ z, are incorporated by shifting the arguments.

Using these barrier functions l(z; µ), we construct barrier functionals b(z; µ) on

suitable spaces Z to implement constraints of the form z ≥ 0 on a measurable set

B⊂Ω by computing the integral over l:

b(·; µ) : Z→ R

z 7→
∫

B
l(z(t); µ)dt.

By b′(z; µ) we denote the formal derivative of b(z; µ), defined by

〈b′(z; µ),δ z〉 :=

∫

Q
l′(z; µ)δ zdt,

if the right hand side is well defined. The following result connects these formal

derivatives to the subifferentials of convex analysis (cf. e.g. [4, Section I.5]).

Proposition 1. Consider b : Lp(Q)→ R, 1 ≤ p < ∞ on a measurable set Q. Then

either ∂b(z; µ) = /0, or ∂b(z; µ) = {b′(z; µ)}.
Consider b : C(Q)→R on a compact set Q and assume /0 6= ∂b(z; µ)⊂M(Q)∼=

C(Q)∗. Then on the set of strictly feasible points S := {t ∈ Q : z(t) > 0} we have

m|S = b′(z; µ)|S ∀m ∈ ∂b(z; µ). (8)

In particular, ∂b(z; µ)∩L1(Q) = {b′(z; µ)}. Moreover,

〈m,δ z〉 ≤
〈
b′(z; µ),δ z

〉
≤ 0 ∀0≤ δ z ∈C(Q) (9)

and ∥∥b′(z; µ)
∥∥

L1(Q)
= min

m∈∂b(z;µ)
‖m‖M(Q) . (10)

Adding barrier functionals to F , we obtain another convex functional Fµ defined

by

Fµ(x) := F(x)+b(x; µ) = J(x)+ χE(x)+ χG(x)+b(x; µ)

= J(x)+ χE(x)+b(x; µ).
(11)

Our definition implies F0 = F , which means that the original state constrained prob-

lem is included in our analysis.

Theorem 4 (Existence of Minimizers). Let F : X→R be defined by (4) and suppose

that Assumptions 1–2 hold. Assume that Fµ0
is coercive for some µ0 > 0.

Then (11) admits a unique minimizer x(µ) = (u(µ),y(µ)) for each µ ∈]0; µ0].
Moreover, x(µ) is strictly feasible almost everywhere in Ω and bounded in X uni-

formly in µ ∈ [0,µ0].
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Next we study first order optimality conditions for barrier problems. For this

purpose, we first have to study the subdifferential of χE , the characteristic function

for the equality constraints Ay−Bu = 0, which can by (2) be written as T x = 0. It is

at this point, where our theory differs from [7].

Lemma 1. If Assumption 1 holds, then there is a constant M, such that for each

u ∈U there are y ∈ Y , uY ∈U and uV ∈V with Ay−BuY = 0 and

u = uY +uV ‖y‖∞ +‖uV‖∞ ≤M ‖u‖U . (12)

Proof. For u ∈U let Bu = r and r = rY + rV as in Assumption 1. Since ranA and

B(V ) (dimV < ∞) are closed, [9, Satz IV.6.3] yields a constant c independent of r,

such that ‖rY‖+‖rV‖ ≤ c‖r‖ ≤ c‖B‖‖u‖U .

By closedness of B(V ), the mapping B : V → B(V ) is open, which yields a

constant C such that for each rV ∈ B(V ) there is uV ∈ V with BuV = rV and

‖uV‖U ≤ C‖rV‖. Since all norms are equivalent on finite dimensional spaces, and

V is a space of bounded functions, we even have ‖uV‖∞ ≤C‖rV‖.
Similarly, because ranA is closed, A : Y ⊃ domA→ ranA is an open mapping

by [9, Satz IV.4.4] and for each rY ∈ ranA there is y ∈ domA with Ay = rY and

‖y‖∞ ≤C‖rY‖.
This altogether yields ‖y‖∞ +‖uV‖∞ ≤C(‖rY‖+‖rV‖)≤M ‖u‖U and thus (12).

Proposition 2. Let X , R be Banach spaces and T : X ⊃ domT → R a closed, densely

defined, linear operator with closed range. Denote by χE the indicator function of

E := kerT . Then

∂ χE(x) = ranT ∗ ∀x ∈ E. (13)

Proof. Since, by definition of the subdifferential, ∂ χE(x) = (kerT )⊥, (13) is a con-

sequence of the closed range theorem for closed operators on Banach spaces [5,

Theorem IV.1.2], which asserts (kerT )⊥ = ranT ∗.

Theorem 5 (First Order Optimality Conditions). Suppose that the Assumptions

1–2 hold. For µ ≥ 0 let x be the unique minimizer of Fµ .

Then there are ( jy, ju) = j ∈ ∂J(x), m ∈ ∂b(y; µ)⊂Y ∗ and p ∈ domA∗ such that

jy +m+A∗p = 0

ju +b′(u; µ)−B∗p = 0
(14)

holds. If y is strictly feasible, then ∂b(y; µ) = {b′(y; µ)} and m is unique.

Proof. Let x be a minimizer of Fµ . Then 0 ∈ ∂Fµ(x) = ∂ (J + χE +b)(x).
To show that (14) has a solution, we have to apply the sum-rule of convex analysis

twice:

0 ∈ ∂ (J + χE +b) = ∂J +∂ (χE +b) = ∂J +∂ χE +∂b.

To be able to apply the sum-rule to a sum f + g of convex, lower semi-continuous

functions, they have to satisfy an additional regularity condition, such as the follow-

ing (cf. e.g. [2, Theorem 4.3.3]):
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0 ∈ int(dom f −domg). (15)

Let now BX be the unit ball in a normed space X . We observe that showing (15) is

equivalent to showing that there is ε > 0 such that each x ∈ εBX can be written as a

difference x1− x2 with x1 ∈ dom f and x2 ∈ domg.

By (3) there exists a strictly feasible point x̆ = (y̆, ŭ), which implies x̆∈ dom(χE +
b). Our assumptions on J include continuity at x̆ and hence boundedness in some ball

x̆+ εBX . Thus,

εBX = (x̆+ εBX )− x̆⊂ domJ−dom(b+ χE),

and we conclude that (15) is fulfilled for f = J and g = χE + b. Therefore the sum-

rule can be applied and yields ∂ (J + χE +b) = ∂J +∂ (χE +b).
Next we show that ∂ (χE + b) = ∂ χE + ∂b by verifying (15) for b and χE . Here

Y = C(Ω) is crucial because it guarantees that (ŭ, y̆+ rBY ) ∈ domb for r < dmin via

(3). By (12) there is δ > 0 such that for each u ∈ δBU we find an y ∈ (r/2)BY with

Ay−BuY = 0 and uV with ‖uV‖∞ ≤ r, such that u = uY +uV .

Thus (y̆+y, ŭ+uY )∈ dom χE and (y̆+y−w, ŭ−uV )∈ domb for all w∈ (r/2)BY

by (3). Consequently, for sufficiently small ε and arbitrary (w,u) ∈ εBX we have

w = (y̆+ y)− (y̆+ y−w)

u = (ŭ+uY )︸ ︷︷ ︸
∈dom χE

−(ŭ−uV )︸ ︷︷ ︸
∈domb

.

This finally shows (15) and the sum-rule yields 0 ∈ ∂J +∂ χE +∂b.

This is an inclusion in Y ∗×U∗. It implies that there are ( jy, ju) ∈ ∂J(x), (ν , p) ∈
∂ χE(x), m ∈ ∂b(y; µ), and l ∈ ∂b(u; µ), such that

jy +ν +m = 0

ju +λ + l = 0.

Proposition 2 applied to T as defined in (2) yields (ν ,λ ) ∈ ranT ∗. Hence there is

p ∈ domT ∗ with ν = A∗p and λ = B∗p. Proposition 1 characterizes m and l in terms

of barrier gradients. This yields (14). If y is strictly feasible, then m = b′(y; µ) by

Proposition 1.

Once, existence of the barrier gradients is established, their uniform boundedness

for µ → 0 can again be shown as in [7].

Proposition 3. Suppose that the Assumptions 1–2 hold. Then for each µ0 > 0

sup
µ∈[0;µ0[

‖m‖Y ∗ ≤C.

Just as in [7] this result allows also to derive uniform bounds on the adjoint state

p(µ) in some suitable Sobolev space. The results on the analytic properties of the

central path carry over literally from [7].
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Theorem 6. Suppose that that the Assumptions 1–3 hold. Let x(µ) be a barrier min-

imizer for µ ≥ 0 and x∗ be minimizer of F. Then

F(x(µ))≤ F(x∗)+Cµ0 (16)

‖x(µ)− x∗‖ ≤C

√
µ

α
. (17)

‖x(µ)− x(µ̃)‖ ≤ c√
αµ
|µ− µ̃| ∀µ̃ ≥ 0. (18)

Finally, we remark that the results on strict feasibility of the homotopy path,

which depend on the regularity of y(µ), carry over from [7].
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