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Summary. We consider a multigrid method for solving the discretized optimality system

of a PDE-constrained optimization problem. In particular, we discuss the construction of an

additive Schwarz-type smoother for a class of elliptic optimal control problems. A rigorous

multigrid convergence analysis yields level-independent convergence rates. Numerical exper-

iments indicate that the convergence rates are also independent of the involved regularization

parameter.

1 Introduction

In this paper we discuss multigrid methods for solving the discretized optimality sys-

tem (or Karush-Kuhn-Tucker system, in short KKT system) for optimization prob-

lems in function spaces with constraints in form of partial differential equations

(PDEs). In particular, we will consider elliptic optimal control problems, see, e.g.,

[3], and focus on so-called one-shot multigrid methods, see [7], where the multigrid

idea is directly applied to the optimality system (instead of a block-wise approach as

an alternative).

One of the most important ingredients of such a multigrid method is an appropri-

ate smoother. In this paper we consider patch smoothers: The computational domain

is divided into small (overlapping or non-overlapping) sub-domains (patches). One

iteration step of the smoothing process consists of solving local problems on each

patch one-by-one either in a Jacobi-type or Gauss-Seidel-type manner. This strategy

can be seen as an additive or multiplicative Schwarz-type smoother. The technique

was successfully used for the Navier-Stokes equations, see [8]. The special case,

where each patch consists of a single node of the underlying grid, is usually called a

point smoother. Such a smoother was proposed for optimal control problems in [2].

So far, the convergence analysis of multigrid methods with patch smoothers ap-

plied to KKT systems of PDE-constrained optimization problems is not as developed

as for elliptic PDEs. One line of argument is based on a Fourier analysis, which,
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strictly speaking, covers only the case of uniform grids with special boundary con-

ditions (and small perturbations of this situation), see [1, 2]. A second and more rig-

orous strategy exploits the fact that, for certain classes of optimal control problems,

the KKT system can be reduced to a compact perturbation of an elliptic system of

PDEs. This guarantees the convergence of the multigrid method if the coarse grid

is sufficiently fine, see [2]. In [4] the general construction and rigorous analysis of

patch smoothers were discussed and applied to the Stokes problem. An extension to

KKT systems was presented in [5].

Here we will propose a multigrid method with a patch smoother applied to a re-

duced system derived from the original KKT system, the same reduced system which

was considered in [2]. A rigorous convergence analysis will be presented directly ap-

plied to the multigrid method for the reduced system, in contrary what was done in

[5]. Compared to the results presented in [5] the numerical experiments show a much

better performance of the multigrid method.

In order to keep the notations simple and the strategy transparent the material

is presented for a model problem in optimal control only. The extension to more

general problems is straight forward.

The paper is organized as follows: In Section 2 the model problem and its

discretization are introduced. Section 3 contains the multigrid method, the patch

smoother, and the main multigrid convergence result. Finally, in Section 4 some nu-

merical results are presented.

2 An Optimal Control Problem

Let Ω be a bounded convex polygonal domain in R2. Let L2(Ω) and H1(Ω) denote

the usual Lebesgue space and Sobolev space with norms ‖.‖L2(Ω) and ‖.‖H1(Ω), re-

spectively. We consider the following elliptic optimal control problem of tracking

type: Find the state y ∈ H1(Ω) and the control u ∈ L2(Ω) such that

J(y,u) = min
(z,v)∈H1(Ω)×L2(Ω)

J(z,v)

with cost functional

J(z,v) =
1

2
‖z− yd‖2

L2(Ω) +
γ

2
‖v‖2

L2(Ω)

subject to the (weak form of the) state equation

−∆y+ y = u in Ω ,
∂y

∂n
= 0 on Γ ,

where Γ denotes the boundary of Ω , yd ∈ L2(Ω) is the desired state and γ > 0 is the

weight of the cost of the control (or simply a regularization parameter).

By introducing the adjoint state p ∈ H1(Ω) we get the following equivalent op-

timality system, see e.g., [3]:
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1. The adjoint state equation:

−∆ p+ p =−(y− yd) in Ω ,
∂ p

∂n
= 0 on Γ .

2. The control equation:

γ u− p = 0 in Ω .

3. The state equation:

−∆y+ y = u in Ω ,
∂y

∂n
= 0 on Γ .

The control equation yields a simple algebraic relation between the control u and

the adjoint state p, which is used to eliminate the control in the state equation. After

multiplying by γ we obtain from the state equation:

p− γ (−∆y+ y) = 0 in Ω ,
∂y

∂n
= 0 on Γ .

The weak formulation of the reduced problem in p and y leads to a mixed variational

problem: Find p ∈ Q = H1(Ω) and y ∈ Y = H1(Ω) such that

a(p,q) + b(q,y) = 〈F,q〉 for all q ∈ Q,

b(p,z) − γ a(y,z) = 0 for all z ∈ Y

with

a(p,q) = (p,q)H1(Ω), b(q,z) = (q,z)L2(Ω), 〈F,q〉= (yd ,q)L2(Ω).

Here (., .)H denotes the standard scalar product in a Hilbert space H and 〈., .〉 is used

for the duality product of linear functionals from the dual space H∗ and elements

in H.

The mixed variational problem can also be written as a variational problem on

Q×Y : Find (p,y) ∈ Q×Y such that

B((p,y),(q,z)) = F(q,z) for all (q,z) ∈ Q×Y

with the bilinear form

B((p,y),(q,z)) = a(p,q)+b(q,y)+b(p,z)− γ a(y,z)

and the linear functional

F(q,z) = 〈F,q〉.
Let (Tk) be a sequence of triangulations of Ω , where Tk+1 is obtained by dividing

each triangle into four smaller triangles by connecting the midpoints of the edges of

the triangles in Tk. The quantity max{diamT : T ∈ Tk} is denoted by hk.
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We consider the following discretization by continuous and piecewise linear fi-

nite elements:

Qk = Yk = {w ∈C(Ω̄) : w|T ∈ P1 for all T ∈ Tk},
where P1 denotes the polynomials of total degree less or equal to 1. Then we obtain

the following discrete variational problem: Find pk ∈ Qk and yk ∈ Yk such that

a(pk,q)+b(q,yk) = 〈F,q〉 for all q ∈ Qk,

b(pk,z)− γ a(yk,z) = 0 for all z ∈ Yk.

The discrete mixed variational problem can also be written as a discrete variational

problem on Qk×Yk: Find (pk,yk) ∈ Qk×Yk such that

B((pk,yk),(q,z)) = F(q,z) for all (q,z) ∈ Qk×Yk. (1)

By introducing the standard nodal basis for Qk and Yk, we finally obtain the following

saddle point problem in matrix-vector notation: Find the coefficient vectors (p
k
,y

k
)∈

RNk ×RNk such that

Kk

(
p

k

y
k

)
=

(
f

k

0

)
with Kk =

(
Kk Mk

Mk −γ Kk

)
. (2)

Here Nk denotes the number of nodes of the triangulation Tk, Mk is the mass matrix

representing the L2(Ω) scalar product on Yk = Qk, and Kk is the stiffness matrix

representing the H1(Ω) scalar product on Yk = Qk.

3 The Multigrid Method

Next we describe the multigrid algorithm: One iteration step for solving (1) at level

k is given in the following form:

Let (p
(0)
k ,y

(0)
k )∈Qk×Yk be a given approximation of the exact solution (pk,yk)∈

Qk×Yk to (1). Then the iteration proceeds in two stages:

1. Smoothing: For j = 0,1, . . . ,m− 1 compute (p
( j+1)
k ,y

( j+1)
k ) ∈ Qk×Yk by an it-

erative procedure of the form

(p
( j+1)
k ,y

( j+1)
k ) = Sk (p

( j)
k ,y

( j)
k ).

2. Coarse grid correction: Set

F̃(q,z) = F(q,z)−B
(
(p

(m)
k ,y

(m)
k ),(q,z)

)

for (q,z) ∈ Qk−1×Yk−1 and let (s̃k−1, r̃k−1) ∈ Qk−1×Yk−1 satisfy

B((s̃k−1, r̃k−1),(q,z)) = F̃(q,z) for all (q,z) ∈ Qk−1×Yk−1. (3)

If k = 1, compute the exact solution of (3) and set (sk−1,rk−1) = (s̃k−1, r̃k−1).
If k > 1, compute approximations (sk−1,rk−1) by applying µ ≥ 2 iteration steps

of the multigrid algorithm applied to (3) on level k−1 with zero starting values.

Set

(p
(m+1)
k ,y

(m+1)
k ) = (p

(m)
k ,y

(m)
k )+(sk−1,rk−1).
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3.1 The Patch Smoother

We will now define a space decomposition of RNk ×RNk into Nk subspaces in terms

of prolongation matrices Pk,i and Qk,i, i = 1, . . . ,Nk, for the variables p and y, re-

spectively: For each i ∈ {1, . . . ,Nk} representing a node of the triangulation, let Nk,i

be the set of all indices consisting of i and the indices of all neighboring nodes (all

nodes which are connected to the node with index i by an edge of the triangulation).

Then, for each i ∈ {1, . . . ,Nk}, the associated local patch consists of all unknowns of

p
k

which are associated to nodes with indices from Nk,i and of the unknown of y
k

which is associated to the node with index i, see Fig. 1 for an illustration of a local

patch. The corresponding canonical embeddings for the variables p and y from the

local patches into RNk are denoted by P̂k,i and Qk,i, respectively.
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Fig. 1. Local patches

Observe that all entries in P̂k,i and Qk,i are either 0 or 1. A single component of

y
k

belongs to exactly one patch, while a single component of p
k

belongs, in general,

to more than one patch. Let dk, j be the local overlap depth at the node with index j,

i.e., the number of all indices l with j ∈ Nk,l , for j = 1, . . . ,Nk. Let Dk be the Nk×
Nk diagonal matrix whose diagonal entries are dk, j, j = 1, . . . ,Nk. The prolongation

matrices Pk,i are given by:

Pk,i = D
−1/2
k P̂k,i.

Now we can describe the smoothing procedure: Starting from some approximations

p
( j)
k and y

( j)
k of the exact solutions p

k
and y

k
of (2) we consider iterative methods of

form:

p
( j+1)
k = p

( j)
k +ω

Nk

∑
i=1

Pk,i sk,i, y
( j+1)
k = y

( j)
k +ω

Nk

∑
i=1

Qk,i rk,i,

where (sk,i,rk,i) solves a small local saddle point problem of the form

K̂k,i

(
sk,i

rk,i

)
=

(
PT

k,i

[
f

k
−Kk p

( j)
k −Mk y

( j)
k

]

QT
k,i

[
−Mk p

( j)
k + γ Kk y

( j)
k

]
)

for all i = 1, . . . ,Nk.

The local matrix K̂k,i is given by

K̂k,i =

(
K̂k,i MT

k,i

Mk,i Mk,iK̂
−1
k,i MT

k,i− Ŝk,i

)
,
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where

K̂k,i = P̂T
k,iK̂kP̂k,i with K̂k =

1

σ
diagKk, Mk,i = QT

k,iMkD
1/2
k P̂k,i

and

Ŝk,i =
1

τ

[
γ QT

k,iKkQk,i +Mk,iK̂
−1
k,i MT

k,i

]
.

The positive parameters σ and τ have to be chosen such that

K̂k ≥ Kk and Ŝk ≥ γ Kk +MkK̂−1
k Mk (4)

with

Ŝk =
( Nk

∑
i=1

Qk,iŜ
−1
k,i QT

k,i

)−1

.

Observe that there is an additional relaxation factor ω in the smoothing procedure.

For the proposed multigrid method the following convergence result can be

shown, see [6]:

Theorem 1. Let ω ∈ (0,2). Then there exists a constant C > 0 such that

‖(p
(m+1)
k − pk,y

(m+1)
k − yk)‖ ≤C m−1/2 ‖(p

(0)
k − pk,y

(0)
k − yk)‖,

where (pk,yk) is the solution of the discrete problem (1), (p
(0)
k ,y

(0)
k ) is the initial

guess, (p
(m+1)
k ,y

(m+1)
k ) is the result of one multigrid iteration, and the norm is given

by

‖(q,z)‖=
(
‖q‖2

L2(Ω) +‖z‖
2
L2(Ω)

)1/2
.

Therefore, the W-cycle multigrid method (i.e. µ = 2) is a contraction with contraction

number bounded away from one, independent of the grid level k, if the number m of

smoothing steps is sufficiently large.

Remark 1. Observe that the norm used in the last theorem is the L2-norm, which is

weaker than the H1-norm one would normally expect for the state and the adjoint

state.

4 Numerical Experiments

Next we present some numerical results for the domain Ω = (0,1)× (0,1) and ho-

mogeneous data yd = 0. The initial grid consists of two triangles by connecting the

nodes (0,0) and (1,1). For the first series of experiments the regularization parame-

ter γ was set equal to 1. The dependence of the convergence rate on the regularization

parameter γ was investigated subsequently.

Randomly chosen starting values for p
(0)
k and y

(0)
k for the exact solution p

k
= 0

and y
k
= 0 were used. The discretized problem was solved by a multigrid iteration
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with a W-cycle (µ = 2) and m/2 pre- and m/2 post-smoothing steps. The multigrid

iteration was performed until the Euclidean norm of the solution was reduced by a

factor ε = 10−8. All tests were done with σ = τ = 0.5 in order to guarantee (4) and

with ω = 1.6, which is motivated by a Fourier analysis on uniform grids.

Table 1 contains the (average) convergence rates q depending on the level k, the

total number of unknowns 2Nk and the number of smoothing steps, written in the

form m/2 + m/2 (for m/2 pre- and m/2 post-smoothing steps). It shows a typical

multigrid convergence behavior, namely the independence of the grid level and the

expected improvement of the rates with an increasing number of smoothing steps.

Table 1. Convergence rates

level k 2Nk 1+1 2+2 3+3 5+5

5 2 178 0.301 0.127 0.067 0.023

6 8 450 0.302 0.128 0.066 0.024

7 33 282 0.302 0.135 0.067 0.024

8 132 098 0.302 0.135 0.067 0.024

9 526 338 0.302 0.135 0.068 0.024

Table 2 shows the convergence rates obtained at grid level 7 with 1 pre- and

1 post-smoothing step for values of γ ranging from 1 down to 10−6. Although the

analysis presented here does not predict convergence rates that are robust in γ , the nu-

merical experiments indicate robustness with respect to the regularization parameter.

Table 2. Dependence on the regularization parameter γ

γ 1 10−2 10−4 10−6

q 0.302 0.302 0.302 0.302

In summary, the numerical experiments confirm the theoretical results of level-

independent convergence rates for the multigrid method with the proposed patch

smoother. The convergence rates are much better than in [5] and comparable with

the rates presented in [2]. Moreover, they strongly support the conjecture that the

convergence rates are also independent of the regularization parameter, as already

stated in [2] for the point smoother on the basis of a Fourier analysis on uniform

grids.
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