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Summary. We consider a multigrid method for solving the discretized optimality system
of a PDE-constrained optimization problem. In particular, we discuss the construction of an
additive Schwarz-type smoother for a class of elliptic optimal control problems. A rigorous
multigrid convergence analysis yields level-independent convergence rates. Numerical exper-
iments indicate that the convergence rates are also independent of the involved regularization
parameter.

1 Introduction

In this paper we discuss multigrid methods for solving the discretized optimality sys-
tem (or Karush-Kuhn-Tucker system, in short KKT system) for optimization prob-
lems in function spaces with constraints in form of partial differential equations
(PDEs). In particular, we will consider elliptic optimal control problems, see, e.g.,
[3], and focus on so-called one-shot multigrid methods, see [7], where the multigrid
idea is directly applied to the optimality system (instead of a block-wise approach as
an alternative).

One of the most important ingredients of such a multigrid method is an appropri-
ate smoother. In this paper we consider patch smoothers: The computational domain
is divided into small (overlapping or non-overlapping) sub-domains (patches). One
iteration step of the smoothing process consists of solving local problems on each
patch one-by-one either in a Jacobi-type or Gauss-Seidel-type manner. This strategy
can be seen as an additive or multiplicative Schwarz-type smoother. The technique
was successfully used for the Navier-Stokes equations, see [8]. The special case,
where each patch consists of a single node of the underlying grid, is usually called a
point smoother. Such a smoother was proposed for optimal control problems in [2].

So far, the convergence analysis of multigrid methods with patch smoothers ap-
plied to KKT systems of PDE-constrained optimization problems is not as developed
as for elliptic PDEs. One line of argument is based on a Fourier analysis, which,
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strictly speaking, covers only the case of uniform grids with special boundary con-
ditions (and small perturbations of this situation), see [1, 2]. A second and more rig-
orous strategy exploits the fact that, for certain classes of optimal control problems,
the KKT system can be reduced to a compact perturbation of an elliptic system of
PDEs. This guarantees the convergence of the multigrid method if the coarse grid
is sufficiently fine, see [2]. In [4] the general construction and rigorous analysis of
patch smoothers were discussed and applied to the Stokes problem. An extension to
KKT systems was presented in [5].

Here we will propose a multigrid method with a patch smoother applied to a re-
duced system derived from the original KKT system, the same reduced system which
was considered in [2]. A rigorous convergence analysis will be presented directly ap-
plied to the multigrid method for the reduced system, in contrary what was done in
[5]. Compared to the results presented in [5] the numerical experiments show a much
better performance of the multigrid method.

In order to keep the notations simple and the strategy transparent the material
is presented for a model problem in optimal control only. The extension to more
general problems is straight forward.

The paper is organized as follows: In Section 2 the model problem and its
discretization are introduced. Section 3 contains the multigrid method, the patch
smoother, and the main multigrid convergence result. Finally, in Section 4 some nu-
merical results are presented.

2 An Optimal Control Problem

Let 2 be a bounded convex polygonal domain in R?. Let L?(2) and H' () denote
the usual Lebesgue space and Sobolev space with norms |.[|2(q) and ||.[|1(q). re-
spectively. We consider the following elliptic optimal control problem of tracking
type: Find the state y € H'(£) and the control u € L>() such that

J(y,u) = i J(z,
(y M) (z,v)eHln(lg}xLz(Q) (Z V)

with cost functional

1 Y
J(Z,V) = 5 ”nydHiZ(Q) + 5 ||V||22<Q)

subject to the (weak form of the) state equation

—Ay+y=u inf, @:0 onl,
an
where I" denotes the boundary of Q, y; € L*>() is the desired state and y > 0 is the
weight of the cost of the control (or simply a regularization parameter).
By introducing the adjoint state p € H!(£) we get the following equivalent op-
timality system, see e.g., [3]:
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1. The adjoint state equation:

d
—Ap+p=—(y—ys) in, a—pzo onT.
n

2. The control equation:
Yu—p = 0 in Q.
3. The state equation:

d
—Ay+y=u inf, —y:0 onl.
on

The control equation yields a simple algebraic relation between the control # and
the adjoint state p, which is used to eliminate the control in the state equation. After
multiplying by y we obtain from the state equation:

d
p—Y(—=Ay+y)=0 inQ, a—y:O onl.
n

The weak formulation of the reduced problem in p and y leads to a mixed variational
problem: Find p € 0 = H'(Q) and y € Y = H'(Q) such that

a(p,q) +b(q,y) = (F,q) forallgeQ,
b(p,z) —va(y,z) = 0 forallz €Y

with
a(p,q) = (P.Du1(@): b(@:2) =(4:3)2@) (F.9)=0a9)2@)-

Here (.,.)n denotes the standard scalar product in a Hilbert space H and (., .) is used
for the duality product of linear functionals from the dual space H* and elements
inH.

The mixed variational problem can also be written as a variational problem on
QO xY: Find (p,y) € Q XY such that

B((p,y),(q,2)) = F(g,z) forall (¢q,z) QXY

with the bilinear form

B((p,y),(g:2)) = alp,q) +b(q,y) +b(p,z) — va(y,z)

and the linear functional
F(q.2) = (F.q).

Let (T;) be a sequence of triangulations of 2, where T}, is obtained by dividing
each triangle into four smaller triangles by connecting the midpoints of the edges of
the triangles in T%. The quantity max{diam7 : T € T} is denoted by Ay.
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We consider the following discretization by continuous and piecewise linear fi-
nite elements:

O =Y ={weC(Q):w|r € P forall T € T},

where P; denotes the polynomials of total degree less or equal to 1. Then we obtain
the following discrete variational problem: Find p; € Q) and y; € Y} such that

a(pr,q) +b(q,yx) = (F,q) forall g€ O,
b(px,z) —va(yx,z) =0 for all z € ¥;.

The discrete mixed variational problem can also be written as a discrete variational
problem on Qy x Y;: Find (pg,yi) € O X ¥ such that

B((pk>yx)s(q,2)) = F(g,z)  forall (¢q,2) € O x Y. (1)

By introducing the standard nodal basis for Qy and Y, we finally obtain the following
saddle point problem in matrix-vector notation: Find the coefficient vectors (p oY k) €

RMe x RN such that

P - ]_c . o Kk Mk
% (X;f) - <0k> with - K= <Mk —ka> ' @

Here Ny denotes the number of nodes of the triangulation Ty, M}, is the mass matrix
representing the L2(Q) scalar product on ¥; = Qy, and Kj is the stiffness matrix
representing the H' (L) scalar product on ¥, = Q.

3 The Multigrid Method

Next we describe the multigrid algorithm: One iteration step for solving (1) at level
k is given in the following form:
Let ( p,((o), y,((())) € Ok X Y, be a given approximation of the exact solution (py, i) €

QO X Yy to (1). Then the iteration proceeds in two stages:

1. Smoothing: For j =0,1,...,m — 1 compute (p,in),y,({jH)) € O X Y by an it-

erative procedure of the form
1)+ N
() =8 (0 ).
2. Coarse grid correction: Set

F(4,2) = (.29~ B((p" 5" (4,2)
for (q,z) € Or_1 X Y1 and let (§_1,7_1) € Qx_1 X Y1 satisfy

B((Si-1,74-1),(¢:2) = F(g,2) forall (q,2) € Q1 xVir. (3)
If k = 1, compute the exact solution of (3) and set (s;_1,7¢—1) = (§x_1,7x—1)-
If k > 1, compute approximations (sg_1,rx—1) by applying pt > 2 iteration steps
of the multigrid algorithm applied to (3) on level k — 1 with zero starting values.
Set

(P ) = (" ™) + (st ).
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3.1 The Patch Smoother

We will now define a space decomposition of RM x RM into Ny subspaces in terms
of prolongation matrices Fy; and Qi ;, i = 1,...,Ng, for the variables p and y, re-
spectively: For each i € {1,...,N,} representing a node of the triangulation, let Ny ;
be the set of all indices consisting of i and the indices of all neighboring nodes (all
nodes which are connected to the node with index i by an edge of the triangulation).
Then, for each i € {1,..., N}, the associated local patch consists of all unknowns of
P, which are assomated to nodes with indices from Ny ; and of the unknown of Vi
which is associated to the node with index i, see Fig. 1 for an illustration of a local
patch. The corresponding canonical embeddings for the variables p and y from the
local patches into R™ are denoted by ng.,- and Qg ;, respectively.

Fig. 1. Local patches

Observe that all entries in 13;” and Oy ; are either O or 1. A single component of
Y belongs to exactly one patch, while a single component of P, belongs, in general,
to more than one patch. Let dy ; be the local overlap depth at the node with index j,
i.e., the number of all indices [ with j € Ny, for j =1,...,N;. Let Dy be the Ny x
Ny, diagonal matrix whose diagonal entries are dy j, j = 17 ..., Ni. The prolongation
matrices P ; are given by:

125

Pii=D, " P

Now we can describe the smoothing procedure: Starting from some approximations
E[((J) and X/((J)
form:

of the exact solutions Py and Vi of (2) we consider iterative methods of
(1) _ . G )
p p +wZszsk,, W=yt Y o,
i=1

i=1

where (s ;, 1y ;) solves a small local saddle point problem of the form

() ()

~ . —Kipy” —M

Kr.i (Qk"’) = ( Falf =Ky ) ky(k)]) foralli=1,...,Ny.
Dk Qk i [ + kayk ]

The local matrix JACk’,- is given by

% K M,{ ,.
ki — T <o )
My i Mk:K Mk,,- — Sk

)
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where
_ P 2 s
Kkﬂ' = ﬁ]ZiKkPk,i with K = g dlagKk, Mk’,’ = leiMk‘Dk/ Pk,i

and |
Ski = [Y Ok iKiQui + MK My ]
The positive parameters ¢ and 7 have to be chosen such that
Ki>Kp and  S; > yK; + MK ' M, )

with
N Neo ool
Se= (L ouSilol)
i=1

Observe that there is an additional relaxation factor @ in the smoothing procedure.
For the proposed multigrid method the following convergence result can be
shown, see [6]:

Theorem 1. Let @ € (0,2). Then there exists a constant C > 0 such that

(™ = pey™ Y =yl < Cm™ 2| (0 = pioy” =)l

where (pi,yx) is the solution of the discrete problem (1), (p,({()), y,(co)) is the initial

guess, ( p,(cmH) , y,((mH)) is the result of one multigrid iteration, and the norm is given

by
2 2 1/2
1@ 91 = (91122 + l2l122)
Therefore, the W-cycle multigrid method (i.e. L = 2) is a contraction with contraction
number bounded away from one, independent of the grid level k, if the number m of
smoothing steps is sufficiently large.

Remark 1. Observe that the norm used in the last theorem is the L2-norm, which is
weaker than the H'-norm one would normally expect for the state and the adjoint
state.

4 Numerical Experiments

Next we present some numerical results for the domain 2 = (0,1) x (0,1) and ho-
mogeneous data y; = 0. The initial grid consists of two triangles by connecting the
nodes (0,0) and (1,1). For the first series of experiments the regularization parame-
ter ¥ was set equal to 1. The dependence of the convergence rate on the regularization
parameter Y was investigated subsequently.

Randomly chosen starting values for E,((O) and X]((O) for the exact solution p, =0
and y, = 0 were used. The discretized problem was solved by a multigrid iteration
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with a W-cycle (4 = 2) and m/2 pre- and m/2 post-smoothing steps. The multigrid
iteration was performed until the Euclidean norm of the solution was reduced by a
factor € = 1078, All tests were done with ¢ = 7 = 0.5 in order to guarantee (4) and
with @ = 1.6, which is motivated by a Fourier analysis on uniform grids.

Table 1 contains the (average) convergence rates g depending on the level k, the
total number of unknowns 2N} and the number of smoothing steps, written in the
form m/2 + m/2 (for m/2 pre- and m/2 post-smoothing steps). It shows a typical
multigrid convergence behavior, namely the independence of the grid level and the
expected improvement of the rates with an increasing number of smoothing steps.

Table 1. Convergence rates

level k 2Ny, 1+1 242 343 5+5
5 2178 0301 0.127 0.067 0.023
8450 0.302 0.128 0.066 0.024
33282 0.302 0.135 0.067 0.024
132098 0.302 0.135 0.067 0.024
526338 0.302 0.135 0.068 0.024

NoRNe clRN Bo)}

Table 2 shows the convergence rates obtained at grid level 7 with 1 pre- and
1 post-smoothing step for values of 7y ranging from 1 down to 107, Although the
analysis presented here does not predict convergence rates that are robust in 7, the nu-
merical experiments indicate robustness with respect to the regularization parameter.

Table 2. Dependence on the regularization parameter Y

y 1 1072 107* 10°°
g 0302 0302 0302 0.302

In summary, the numerical experiments confirm the theoretical results of level-
independent convergence rates for the multigrid method with the proposed patch
smoother. The convergence rates are much better than in [5] and comparable with
the rates presented in [2]. Moreover, they strongly support the conjecture that the
convergence rates are also independent of the regularization parameter, as already
stated in [2] for the point smoother on the basis of a Fourier analysis on uniform
grids.
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