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Summary. The importance of using coarse components, and thus at least one additional level,

in the design of domain decomposition methods has been understood for at least twenty years.

For many problems of interest, such a device, which provides at least a minimal amount of

global transfer of information in each step, is necessary in order to obtain convergence rates

which are independent of the number of subdomains. An historical overview, colored by the

scientific history of its author, is given of the development of such coarse components of the

domain decomposition algorithms. These algorithms are all preconditioned conjugate gradient

methods or they are accelerated by using some alternative Krylov space method. The precon-

ditioners are built from solvers of the given problem restricted to subdomains and a coarse

approximation which often can be quite exotic.

1 Introduction

We will consider finite element approximations of, e.g., a self-adjoint scalar elliptic

problem or the equations of linear elasticity. The domain Ω of the partial differential

equation is subdivided into non-overlapping subdomains (substructures) Ωi; there

can be very many of them, in particular, when massively parallel computer systems

are employed. Between the subdomains, we have the interface Γ ; Γh is its set of

finite element nodes. Each subdomain is the union of elements of the finite element

triangulation.

There are two main families of domain decomposition algorithms: the iterative

substructuring algorithms, using solvers of the finite element problems restricted to

the Ωi, each often with tens of thousands degrees of freedom, and the overlapping

Schwarz methods, using solvers on a set of overlapping subdomains Ω ′i , often ob-

tained by adding layers of elements to the individual Ωi’s. Exact solvers are often

used to solve these local problems as in much of traditional finite element practice.

The preconditioner of the finite element problem also include a coarse, global

solver with a few degrees of freedom for each subdomain. A Krylov space method—

conjugate gradients or GMRES—is always used to accelerate the convergence.

Early on, coarse spaces were not used and only continuous problems were con-

sidered; in fact it is unclear what a coarse problem then might be. Algorithms based
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on overlapping subdomains were considered by [2, 28, 31] and algorithms with non-

overlapping subdomains, in a Poincaré-Steklov framework, by [1, 27]

In the 1980’s, there were a number of studies for problems where the interfaces

without cross points (or cross edges), i.e., all finite element nodes on the interface

are common to the boundary of only two subdomains; the decompositions of the

domains effectively were into strips.

2 Early Two-Level Domain Decomposition Methods

The successful introduction of a second, coarse level dates to the mid-eighties. In

particular, the first and fourth paper in a series of four, [4, 5], were crucial for the

development of the theory of iterative substructuring methods for more general de-

compositions; these papers existed at least in preprint form by the time of the first

international conference on domain decomposition methods, DD1, held in Paris in

January 1987. Already at that time, it was realized that a coarse component, to pro-

vide at least a minimal amount of global transfer of information across the entire

domain, is required to obtain bounds which are independent of the number of subdo-

mains.

In the first of these papers, on problems in two dimensions, the substructures are

triangles and the coarse space is spanned by continuous, piece-wise linear functions

on this coarse triangulation in a set-up resembling that of geometric multigrid. There

is one local space for each of the edges of the interface. A C(1+ log(H/h))2 bound is

established for the condition number of the preconditioned operator; here H is a typ-

ical subdomain diameter and h that of the finite element triangles. These logarithmic

factors arise when we partition the trace of finite element functions on the interface

into a sum of functions with a nonzero trace only on one edge.

The main result is obtained in an analysis for one subdomain at a time. As a

consequence, the constant C is independent of the number of subdomains and the

result is valid uniformly for any scalar problem

−div(a(x)grad)u(x) = f (x),

where a(x) = ai,x ∈ Ωi with the ai arbitrary, positive constants. An important tool,

used in this work, is a finite element Sobolev inequality for plane domains:

‖uh‖2
L∞(Ωi)

≤C(1+ log(H/h))‖uh‖2
H1(Ωi)

.

This is a genuine finite element and best possible result; see [7].

Before discussing [5], which is regarded as the most important in the series, we

consider the geometry of the decomposition of a domain in three dimensions. The

interface Γ contains all the finite element nodes which belong to the closure of at

least two subdomains. It is decomposed into faces, edges, and vertices: the nodes on

a face F i j belong to a pair of subdomains Ωi and Ω j, edges and vertices make up

the boundary of faces with edges typically common to at least three subdomains, and

vertices are end points of edges. Such decompositions can be defined even for quite
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irregular subdomains, such as those delivered by mesh partitioners. Each of these

geometric objects can be defined in terms of an equivalence class of nodes with a

common set of subdomain indices. For many iterative substructuring methods, as

well as for some more recent methods based on overlapping decompositions, there

are basis functions of coarse spaces directly associated with these geometric objects:

θF i j ,θE ik , and θV iℓ . They are defined by the value 1 on the set of nodes in question and

vanish at all other nodes on Γ and they are discrete harmonic, i.e., the values inside

the subdomains give a minimal energy extension. Therefore, they form a partition of

unity for any subdomain which is interior to Ω .
The union of the edges and vertices of the interface in three dimensions is known

as the wire basket and individual subdomains also have wire baskets. [5] concerns

wire basket algorithms. Instead of working with a conventional coarse space, for

which, to this day, no strong results, independent of the values of the ai, have been

derived for three dimensions, the coarse space functions are given in terms of their

values on the wire basket of the subdomains. The values on a face are then given

in terms of the values on its boundary; this establishes continuity across Γ . A cor-

responding interpolation operator, into the coarse space, will reproduce constants.

Technically, this coarse space is of large dimension, but this is compensated for by

using a particular inexact solver in terms of one variable per subdomain, namely the

average values over the subdomain wirebaskets. The values at the subdomain nodes

are then computed locally. We note that these first successful algorithms of this kind

are also among the most complicated.

A version of these algorithms is developed and analyzed in the 1990 PhD thesis

of Barry Smith. It was also implemented on parallel processors, see [29]. Smith then

moved on to the development of PETSc. He also took the initiative to a joint project

with Dryja and this author, which led to the development and analysis of a large

number of primal iterative substructuring algorithms, see [13]. The analysis in that

paper is carried out in an abstract Schwarz framework, which has its roots in a DD1

contribution of Lions [23]. All bounds are, with a few exceptions, of the form C(1+
log(H/h))2 and most of them are independent of coefficient jumps. Smith also later

wrote a pioneering book, see [30].

Another important contribution at DD1, is a paper by [18]; their algorithms re-

sembles one-level FETI methods. The importance of this work has been overlooked;

see, however [32, Sec. 1.3.5].

By the time of DD2, the first two-level additive Schwarz methods had been devel-

oped and shown to be optimal and scalable, i.e., with convergence rates independent

of the number of subdomains, for problems with moderately varying coefficients; cf.

[12]. These preconditioners are built from solvers on the set of overlapping subdo-

mains and a conventional coarse spaces just as that of [4]. At first, a generous overlap

was assumed but the methods work most efficiently with modest overlap. This led to

an analysis of the case of small overlap and the bound, with δ the overlap:

κ(Tas)≤C(1+H/δ ),

shown to be best possible by Brenner; see [6, 14].
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Already at the time of DD3, it was realized that these and the iterative substruc-

turing algorithms could be analyzed in a common abstract Schwarz framework; see

[32, Chap. 2].

3 Additional Comments

It comes as no surprise to any student of multigrid that a global component of the pre-

conditioner is very important. What makes the two families different, is that only two

levels are required for a domain decomposition method even for very large problems.

This limits the number of communication steps. The two-level overlapping Schwarz

methods require two communication steps per iteration. One of them can be elimi-

nated resulting in restricted additive Schwarz methods, invented by [8]. These algo-

rithms have been studied extensively and they also typically require fewer iterations.

The great repertoire of coarse spaces has made it possible to develop fast meth-

ods with convergence rates independent of even large jumps in the material proper-

ties across the interface. It is also easy to extend the overlapping Schwarz methods

to more than two levels and progress has also be made recently on introducing ad-

ditional levels for the iterative substructuring methods of Sec. 4; see in particular

[20, 33]. This work is increasingly relevant for very large problems and massively

parallel computing systems for which the coarse space will be of very large dimen-

sion and presents a bottle neck.

The extension of any domain decomposition developed for scalar elliptic prob-

lems to the equations of linear elasticity requires a modification of the coarse spaces

to accommodate the larger null space for these problems; in three dimensions, there

are six rigid body modes of zero energy instead of a single constant. This null space

condition for the coarse space was formalized in [24] and it is also explained well in

[30]. In many cases, the extension is relatively routine, see [32, Chap. 8]. A success-

ful approach begins by constructing a stable interpolation operator, which reproduces

all rigid body modes, and with an energy that can be bounded uniformly or with a

factor C(1+ log(H/h)).

4 Other Iterative Substructuring Methods

Other important domain decomposition algorithms date back at least to DD2, see [3].

This development led to balancing Neumann-Neumann methods with coarse space

components; cf. [32, Sec. 6.2]. An important role in the description and analysis

of the Neumann-Neumann algorithms is played by a family of weighted counting

functions δ †
i , associated with the individual ∂Ωi and defined, for γ ∈ [1/2,∞), by a

sum of contributions from the coefficient in Ωi and its next neighbors;

δ †
i (x) :=

a
γ
i

∑ j∈Nx
a

γ
j

, x ∈ ∂Ωi,h∩Γh.

Here Nx is the set of indices j of the subregions such that x ∈ ∂Ω j,h. A subscript h

denotes the set of nodes on the set in question. These functions provide a partition of
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unity:

∑
i

RT
i δi

†(x)≡ 1, x ∈ Γh,

for any Ωi such that ∂Ωi∩∂ΩD = /0, and they span the coarse space of the algorithm.

Here RT
i provides an extension by zero to the nodes of Γ \∂Ωi. If the coefficients are

constant in each subdomain, each of the δ †
i can be written as the linear combination

of the face, edge, and vertex functions θF i j ,θE ik , and θV iℓ , of the interface.

The local space Vi for the balancing methods has non-zero interface values only

on ∂Ωi. A scaled Neumann problem, given by the bilinear form

ãi(u,v) = ai

∫

Ωi

∇(δiu) ·∇(δiv)dx,

is used to define the local parts of a hybrid Schwarz method and C(1 + log(H/h))2

bounds were established, with C independent of the number of substructures and of

jumps in the coefficients across the interface, around 1995. These algorithms have

proven very successful and have been used extensively, in a modified form, for prob-

lems of elasticity.

What is now called the one-level FETI methods were introduced in [17] and first

analyzed in [25]. Instead of describing these methods, we will now consider the more

recently developed FETI-DP and BDDC algorithms.

5 FETI-DP and BDDC
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Fig. 1. Decomposition of subdo-

mains for FETI-DP and BDDC meth-

ods.

The FETI-DP methods were introduced in [15,

16] and the BDDC methods in [9]. These more

recent methods only require the solution of posi-

tive definite problems. They are defined in terms

of a set of primal continuity constraints which

throughout the iteration; see Fig. 1. A pair of

FETI-DP and BDDC preconditioned systems

have essentially identical spectra if they employ

the same primal constraints; see [26].

The primal constraints in this case make the

values at the subdomain vertices global, while

we obtain multiple values at all other nodes on

the interface. The partially subassembled stiff-

ness matrix of this alternative finite element

model is used to define the preconditioners. A

linear system of equations of this kind has a positive definite matrix and it can be

solved much less expensively than a system with the fully assembled matrix.

In a FETI-DP algorithm, the continuity at the edge nodes is enforced by using

Lagrange multipliers and the rate of convergence is enhanced by solving Dirichlet

problems on each subdomain in each iteration. The conjugate gradient algorithm is
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used to find the correct values of the Lagrange multipliers. The primal constraints

provide a global component of these preconditioners.

In a BDDC algorithm, continuity is instead restored in each step by comput-

ing weighted averages across the interface. This leads to non-zero residuals at some

nodes interior to the subdomains, and in each iteration, these residuals are eliminated

by using subdomain Dirichlet solves.

For problems in three dimensions, primal variables associated with point con-

straints alone do not lead to competitive algorithms; this is technically closely related

to the issues raised in early studies of primal iterative substructuring methods. In-

stead, or in addition, averages (and moments) over faces or, preferably edges, should

have common values across the interface.

The selection a small and effective set of primal constraints for elasticity prob-

lems with large jumps in the Lamé parameters has been very challenging, see [21].

The resulting recipes have proven successful for very difficult problems, see [19]. In

spite of the seemingly different coarse components of these algorithms, the tools of

analysis are essentially the same as for the older iterative substructuring methods.

6 Additional Roles for Coarse Spaces

In work on incompressible Stokes, almost incompressible elasticity, and Maxwell’s

equations, the choice of coarse spaces requires additional care.

By the divergence theorem, a divergence-free extension of boundary data is only

possible if there is a zero net flux across the boundary. If for a Schwarz method for

almost incompressible elasticity a coarse component u0 of a given u can be chosen

with same net fluxes across subdomain boundaries, then the interface values of the

remainder, w := u−u0, will allow for a divergence free extension and a successful

decomposition of w into local components. These ideas have been explored repeat-

edly for balancing Neumann-Neumann, FETI-DP, and BDDC algorithms; see e.g.,

[22] and more recently for overlapping Schwarz methods, see [10, 11], which use

coarse spaces borrowed from primal substructuring methods. Taking account of the

net flux across the subdomain boundaries is a necessity, for almost incompressible

elasticity, since we have to make sure that a divergence free function can be parti-

tioned into components in the same class; otherwise the energy of these local com-

ponents would greatly exceed that of the given function. For Maxwell’s equation,

curl-free extension are desirable for very similar reasons.
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