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Summary. In the theory for domain decomposition methods, it has previously often been

assumed that each subdomain is the union of a small set of coarse shape-regular triangles or

tetrahedra. Recent progress is reported, which makes it possible to analyze cases with irregular

subdomains such as those produced by mesh partitioners. The goal is to extend the analytic

tools so that they work for problems on subdomains that might not even be Lipschitz and to

characterize the rates of convergence of domain decomposition methods in terms of a few,

easy to understand, geometric parameters of the subregions. For two dimensions, some best

possible results have already been obtained for scalar elliptic and compressible and almost

incompressible linear elasticity problems; the subdomains should be John or Jones domains

and the rates of convergence are determined by parameters that characterize such domains and

that of an isoperimetric inequality. Technical issues for three dimensional problems are also

discussed.

1 Introduction

In developing theory for domain decomposition methods of iterative substructuring

type, we have typically assumed that each subdomain is quite regular, e.g., the union

of a small set of coarse triangles or tetrahedra; see, e.g., [9, Assump. 4.3]; we will

call such subdomains regular. However, such an assumption is unlikely to hold es-

pecially if the subdomains result from using a mesh partitioner, such as METIS, see

[18]. Then, the subdomain boundaries might not even be uniformly Lipschitz con-

tinuous in the sense that the number of patches required to cover ∂Ω , and in each

of which the boundary is the graph of a Lipschitz continuous function, is not uni-

formly bounded independently of the finite element mesh size. We also note that the

shape of the subdomains are likely to change if the mesh size is altered and a mesh

partitioner is used several times.

The purpose of this paper is to report on recent development of theory for do-

main decomposition methods under very weak assumptions on the subdomain par-

titioning and to categorize the rates of convergence of the algorithms in terms of

a few geometric parameters. This work is being carried out in collaboration with

C. R. Dohrmann, A. Klawonn, and O. Rheinbach and has so far resulted in four



88 Olof B. Widlund

archival papers, [10, 11, 12, 23]. Results have been obtained for scalar elliptic prob-

lems, compressible linear elasticity, and almost incompressible elasticity problems

approximated by mixed finite elements with pressure spaces with discontinuous ele-

ments.

We will denote a set of nonoverlapping subdomains by {Ωi}. Their closures

cover the given domain Ω , and the interface between them is denoted by Γ . We will

discuss results for the FETI-DP and BDDC families of algorithms, defined on such

a set of nonoverlapping subdomains, as well as results for some two-level Schwarz

algorithms based on overlapping subdomains Ω ′i . We will assume that each such

subdomain has been obtained from one of the Ωi by adding one or more layers of

finite elements. The FETI-DP and BDDC algorithms are iterative substructuring al-

gorithms, i.e., they provide preconditioners based on nonoverlapping subdomains.

So far, complete results have only been obtained for problems in the plane. We

will consider scalar elliptic problems of the following form:

−div(ρ(x)∇u(x)) = f (x) x ∈Ω , (1)

with a homogeneous Dirichlet boundary condition on ∂Ω ; we make this choice of

boundary condition just to simplify the discussion of our results. The coefficient

ρ(x) is strictly positive and assumed to be equal to a constant ρi for x ∈ Ωi, but is

otherwise arbitrary. As is often the case, our results hold equally well for isotropic

compressible elasticity problems.

−div(2µε(u)+λ tr(ε(u))I) = f in Ω ⊂ Rn. (2)

Here εi j(u) = (1/2)(∂ui/∂x j + ∂u j/∂xi) and µ and λ the Lamé parameters; in the

almost incompressible case, λ/µ takes on very large values.

Older results on domain decomposition methods for linear elasticity are summa-

rized in [9, Chap. 8] and [24] gives more recent results on FETI-DP algorithms. All

this work is for regular subdomains. We note that there are extensive and successful

numerical results for more general problems; see, e.g., [9, 21, 22].

We use lower order, continuous finite elements and triangulations with shape reg-

ular elements, i.e., the diameter of an element is bounded uniformly by a constant

times the radius of the largest inscribed circle or sphere and assume that each subdo-

main is a union of elements. For almost incompressible elasticity, we use an inf-sup

stable pair of finite element spaces after introducing the new variable p = −λdivu

and assume that the elements of this second finite element space are discontinuous.

We can then eliminate this pressure variable element-wise, recover a positive defi-

nite problem, and use the same conjugate gradient acceleration as for compressible

elasticity.

For a collection of auxiliary results used in the analysis of iterative substructuring

algorithms, in the case of regular subdomains, see [9, Sec. 4.6]. Our studies require

the generalization of these technical tools to obtain proofs of bounds on the con-

vergence rates of FETI-DP algorithms and on certain overlapping Schwarz methods

for less regular subdomains. We also have had to modify some of the reasoning in

the main proofs. Four auxiliary results, namely a Poincaré inequality, a Sobolev-type
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inequality for finite element functions, bounds for certain edge and face terms, and

a finite element extension theorem are required in our proofs; see Lemmas 2, 6, 7,

and 8. We will work with John domains and Jones domains, see Definitions 1 and 2;

the latter are also known as uniform or (ε,∞)-domains. We will express our bounds

on the rate of convergence of our algorithm in terms of the few parameters of Defi-

nitions 1, 2, and Lemma 1.

2 A Poincaré Inequality, John and Jones Domains

We will first introduce John domains and then consider a Poincaré inequality for such

domains. We will also introduce Jones domains; the latter are needed in order to ob-

tain a finite element extension theorem, required in the analysis of FETI and BDDC

algorithms, see [23], but not for the algorithms based on overlapping subdomains,

see [8, 9, 10, 11, 12].

We next give a definition of a John domain; see [16] and the references therein.

In the proofs of several of our auxiliary results, we will assume that the subdomains

belong to this class.

Definition 1 (John Domain). A domain Ω ⊂ Rn, an open, bounded, and connected

set, is a John domain if there exists a constant CJ ≥ 1 and a distinguished central

point x0 ∈Ω such that each x∈Ω can be joined to it by a rectifiable curve γ : [0,1]→
Ω with γ(0) = x0, γ(1) = x and |x− γ(t)| ≤CJ ·distance(γ(t),∂Ω) for all t ∈ [0,1].

This condition can be viewed as a twisted cone condition. We note that certain

snowflake curves with fractal boundaries are John domains and that the length of the

boundary of a John domain can be arbitrarily much longer than its diameter. We also

note that for any choice of the point x0, there is a point x ∈ Ω at a distance of at

least diameter(Ω)/2. We find that diameter(Ω)≤ 2CJrΩ , where rΩ is the radius of

the largest ball inscribed in Ω and centered at x0. Conditions on the boundary are of

course also imposed.

In any analysis of any domain decomposition method with a second, coarse level,

we need a Poincaré inequality. This inequality is closely related to an isoperimetric

inequality. The next lemma is attributed to [28] and [15].

Lemma 1 (Isoperimetric Inequality). Let Ω ⊂ Rn be a domain and let u be suffi-

ciently smooth. Then,

inf
c∈R

(∫

Ω
|u− c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω ,n)
∫

Ω
|∇u|dx,

if and only if,

[min(|A|, |B|)]1−1/n ≤ γ(Ω ,n)|∂A∩∂B|. (3)

Here, A ⊂ Ω is an arbitrary open set, and B = Ω \ Ā; γ(Ω ,n) is the best possible

constant and |A| is the measure of the set A, etc.
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We note that the domain does not need to be star-shaped or Lipschitz. For n = 2,

the best choice of c = ūΩ , the average of u over the domain. A small value of γ(Ω ,n)
is desirable for our purposes.

It is known that any simply connected plane domain with a finite Poincaré pa-

rameter γ(Ω ,2) is a John domain; see [7]. It is also known, see [3], that any John

domain has a bounded Poincaré parameter γ(Ω ,n).
We obtain the standard Poincaré inequality by using the Cauchy-Schwarz in-

equality, for two dimensions, and the Hölder inequality several times for three.

Lemma 2 (Poincaré’s Inequality). Let Ω be a John domain. Then,

‖u− ūΩ‖2
L2(Ω) ≤ (γ(Ω ,n))2|Ω |2/n‖∇u‖2

L2(Ω) ∀u ∈ H1(Ω).

Throughout, we will use a weighted H1(Ωi)−norm defined by

‖u‖2
H1(Ωi)

:=
∫

Ωi

∇u ·∇udx+1/H2
i

∫

Ωi

|u|2 dx = |u|2
H1(Ωi)

+1/H2
i

∫

Ωi

|u|2 dx.

Here Hi is the diameter of Ωi. The weight for the L2−term results from the standard

H1−norm on a domain with diameter one and a dilation. We use Lemma 2 to remove

L2−terms in some of our estimates.

We next consider Jones domains.

Definition 2 (Jones Domains). A domain Ω ⊂ Rn is a Jones domain if there exists

a constant CU such that any pair of points x1 ∈ Ω and x2 ∈ Ω can be joined by a

rectifiable curve γ(t) : [0,1]→Ω with γ(0) = x1, γ(1) = x2, and where the Euclidean

arc length of γ ≤ CU |x1− x2| and mini=1,2 |xi− γ(t)| ≤ CU · distance(γ(t),∂Ω) for

all t ∈ [0,1].

It is known, and easy to see, that any Jones domain is a John domain. It is

also easy to construct John domains that are not Jones domains. According to [17,

Thm. 4], they form the largest class of finitely connected domains for which an ex-

tension theorem holds in two dimensions. It is also known that every Jones domain

Rn allows for a bounded extension with respect to the seminorm of H1, see [17,

Thm. 2].

Lemma 3. Let Ω ⊂Rn be a Jones domain and let P0 be the space of constants. There

then exists a bounded, linear operator EΩ : H1(Ω)/P0→H1(Rn)/P0, which extends

any element in H1(Ω) to one defined for all of Rn, i.e., (EΩ u)|Ω = u ∀ u∈H1(Ω)/P0.

The norm of this operator depends only on CU (Ω).

An important tool in any study of elasticity is the second Korn inequality. For a

proof for Jones domains, see [14].

Lemma 4 (Korn Inequality for Jones Domains). Let Ω ⊂ Rn be a bounded Jones

domain. Then, there exists a constant C, which depends only on the Jones constant

CU (Ω) and the dimension n, such that
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|u|2
H1(Ω) ≤C ∑

i j

‖ε(u)i j‖2
L2(Ω)

for all u ∈
{

u ∈H1(Ω) :
∫

Ω

( ∂ui

∂x j
− ∂u j

∂xi

)
dx = 0, i, j = 1, . . . ,n

}
.

Their proof has many details in common with Jones’ proof of Lemma 3. In the

case of mixed finite element approximations of almost incompressible elasticity, we

also need to establish the inf-sup stability of the mixed method. This problem is

closely related to the Korn inequality; see, e.g., [4] in which new proofs of both

results are given for general Lipschitz domains and the continuous case. There is

a proof of the underlying inequality for John domains in [1]; the constant in that

estimate depends only on the John parameter CJ(Ω).

3 FETI-DP and BDDC Algorithms

We first note that these two families of domain decomposition algorithms are closely

related. Any such algorithm is characterized by a set of primal constraints and it is

known that a pair of FETI-DP and BDDC algorithms, with the same primal con-

straints, have spectra which are almost identical; these spectra determine the rate

of convergence of these preconditioned conjugate gradient methods. This result was

first established in [27]; see also [26] for a simpler proof and a general discussion

and general references on these algorithms.

We denote by W h(Ωi) the standard finite element space of continuous, piecewise

linear functions on Ωi which vanish on ∂Ωi∩∂Ω . We will denote by hi the smallest

diameter of the finite elements in the subdomain Ωi. The corresponding finite ele-

ment trace spaces are denoted by W (i) := W h(∂Ωi ∩Γ ), i = 1, . . . ,N. The product

space of the W (i) is denoted by W and in the context of these iterative methods, we

need to consider elements of this space, which are not necessarily continuous across

the interface. However, the primal variables are global. Thus, in two dimensions, the

values at the subdomain vertices are often chosen to be primal, i.e., to have com-

mon values. In the FETI-DP algorithms, the remaining continuity requirements at all

the remaining nodes on the interface will only be fully in force when the iteration

has converged and certain Lagrange multipliers have reached their correct values. In

the BDDC algorithms, on the other hand, continuity across the interface is restored,

in each step of the iteration, by replacing the discontinuous values on the interface

by a weighted average. The partially assembled subspace, with the primal variables

global, will be denoted by W̃ .
We can now formulate our main result, which is also valid for compressible elas-

ticity.

Theorem 1 (Condition Number Estimate). Let the domain Ω ⊂ R2 be partitioned

into subdomains Ωi, which are partitioned into shape regular elements and which

have complements CΩi that are Jones domains. Let all values at the subdomain ver-

tices be primal. Then, with M the Dirichlet preconditioner, F the FETI-DP operator,

the condition number of the preconditioned conjugate gradient method satisfies
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κ(M−1F)≤C max
i

(1+ log(Hi/hi))
2.

Here C is a constant which depends only on the parameters CJ(Ωi) and CU (CΩi)
of Definitions 1 and 2, the Poincaré parameters γ(Ωi,2) of the subdomains, and the

shape regularity of the finite elements. The result is also independent of possible

jumps in the coefficient ρi, or the Lamé parameters, across the interface between the

subdomains.

A complete proof of this result is given in [23]. It is as strong a result as those

in [14, 24] for regular subdomains. We also note that numerical experiments on very

irregular snowflake subdomains have added interesting insight on how best to scale

the FETI-DP preconditioners.

We will now indicate what is required to establish the theorem. We denote by

H the discrete harmonic extension operator: H(vΓ ) is the minimal energy exten-

sion of the restriction of the finite element function v to the interface Γ . In what

follows, H(uv) will mean the discrete harmonic extension of the finite element func-

tion obtained by interpolating the product of u and v. For each edge Ei j (the open

set common to ∂Ωi and ∂Ω j and which does not contain its endpoints) we define

an edge cutoff function θEi j , which is the discrete harmonic function which equals 1

at all nodes on the edge Ei j and which vanishes at all other interface nodes; cf. [9,

Sec. 4.6].

We note that part of the proof of any result on a FETI-DP or BDDC algorithm,

such as Theorem 1, is purely algebraic. It is also known that in order to fully prove

that theorem, we need to use tools of analysis to establish a result such as Lemma 5;

see, e.g., [26] or [24, Sec. 8]. For the set of primal constraints considered in Theo-

rem 1, we need to prove:

Lemma 5. Let Ei j be an edge common to the boundaries of Ωi and Ω j. For all v∈ W̃

and with v(i) := R(i)v,v( j) := R( j)v, we have

ρi|H(θEi j δ †
i (v(i)− v( j)))|2

H1(Ωi)
≤C(1+ log(Hi/hi))

2ρi|v(i)|2
H1(Ωi)

+C(1+ log(H j/h j))
2ρ j|v( j)|2

H1(Ω j)
.

(4)

Here R(i) denotes the restriction operator from W̃ to W (i). The parameter δ †
i :=

ρ
γ
i /∑ j∈Nx

ρ
γ
j , where γ ∈ [1/2,∞) and Nx is the set of indices j of the subregions

with x on their boundaries. The constant C in the inequality depends only on the

parameters CJ(Ωi) and CU (CΩi) of Definitions 1 and 2, the Poincaré parameters

γ(Ωi,2) of the subdomains, and the shape regularity of the finite elements.

To prove this lemma, we need three auxiliary results, in addition to Poincaré’s in-

equality. The first is a discrete Sobolev inequality. This inequality, (5), is well known

in the theory of iterative substructuring methods. Proofs for domains satisfying an in-

terior cone condition are given in [5] and [6, Sec. 4.9] and a different proof is given

in [9, p. 102]. For a proof for John domains, see [10].
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Lemma 6 (Discrete Sobolev Inequality). Let Ωi ⊂ R2 be a John domain. Then,

‖u− ūΩi
‖2

L∞(Ωi)
≤C(1+ log(Hi/hi))|u|2H1(Ωi)

, (5)

for all u ∈W h(Ωi). The constant C depends only on the John parameter CJ(Ωi) of

Ωi and the shape regularity of the finite elements.

A three-dimensional counterpart of Lemma 6 is given in [9, Subsec. 4.6.2]. This

provides an estimate of the L2−norm of finite element functions over subdomain

edges and this result has not yet been extended fully to the case of irregular subdo-

mains.

Another important result provides estimates for different types of edge functions.

For regular subdomains in two dimensions, this lemma was first given in [13].

Lemma 7 (Edge Lemma). Let Ωi ⊂R2 be a John domain, let Ei j ⊂ ∂Ωi be an edge,

and θEi j ∈W h(Ωi) be the finite element function which equals 1 at all nodes of Ei j,

and which vanishes at all the other nodes on ∂Ωi, and is discrete harmonic in Ωi.

Then, for any u ∈W h(Ωi), we have

|H(θEi j u)|2
H1(Ωi)

≤C(1+ log(Hi/hi))
2‖u‖2

H1(Ωi)
, (6)

|θEi j |2H1(Ωi)
≤C(1+ log(Hi/hi)), (7)

‖θEi j‖2
L2(Ωi)

≤CH2
i (1+ log(Hi/hi)). (8)

Here, C depends only on the John parameter CJ(Ωi) of Ωi and the shape regularity

of the finite elements. The logarithmic factor in (8) can be removed if all angles of

the triangulation are acute and W h is a space of piece-wise linear finite elements.

For a proof, see [23].

In order to advance the work on three dimensional problems, it would be central

to develop similar face and edge lemmas under some suitable geometric assumptions;

cf. [9, Sec. 4.6] for results in case the subdomains are regular. At this time, we can

prove such bounds for a subdomain which contains a Lipschitz domain with edges

which are common to those of the subdomain. It is also clear that in the general case,

we need a limit on the number of points on each edge since it can easily be seen that

the energy of the edge function θEik will grow in proportion to this number. In a case

of many edge nodes, the energy of the face functions must also be large.

We establish inequality (6) by using ideas similar to those of [9, Proofs of

Lems. 4.24 and 4.25]. We construct a function ϑEi j which has the same boundary

values as θEi j and which satisfies the two inequalities (6) and (7). Since θEi j and

H(θEi j u) are discrete harmonic, the two inequalities (6) and (7) will then hold. We

note that in our work on almost incompressible elasticity, described in Section 5, such

results are also required for domains with large aspect ratios; see [12, Lem. 5.4]. The

bounds as in Lemma 7 will grow linearly with the aspect ratio of the subdomains.

The next lemma was proven for Lipschitz domains and quite general conform-

ing finite elements in [32], using a technique from [2]; see also [9] for a different
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proof. In [23], we have developed a new proof for more general domains, which uses

Lemma 3 and a result by [30]. We note that this result can be viewed as providing an

estimate of the rate of convergence of the classical Dirichlet-Neumann algorithm for

two subdomains and with a quite irregular interface; see, e.g., [9, Sec. 1.3.3].

Lemma 8 (Extension Lemma). Let Ωi and Ω j, subsets of Rn, be two subdomains

with a common (n−1)-dimensional interface Γ i j. Furthermore, let Ωi be a domain

with a complement which is a Jones domain, let

W h
i = {vh ∈W h(Ωi) : vh(x) = 0 at all nodes of ∂Ωi \Γ i j},

W h
j = {vh ∈W h(Ω j) : vh(x) = 0 at all nodes of ∂Ω j \Γ i j}.

Then, there exists an extension operator

Eh
ji : W h

j −→W h
i ,

with the following properties ∀uh ∈W h
j :

(Eh
jiuh)|Ω j

= uh and |Eh
jiuh|H1(Ωi)

≤C|uh|H1(Ω j)

where the constant C depends only on the Jones parameter CU (CΩi) of the comple-

ment of Ωi and the shape regularity of the elements and is otherwise independent of

the finite element mesh sizes hi and h j and the diameters Hi and H j.

4 An Overlapping Schwarz Method

When we now turn to another major family of domain decomposition methods, we

note that the overlapping Schwarz methods can be used even if the stiffness matrix

of the problem is only available in fully assembled form. This is important in many

applications. The FETI-DP and BDDC algorithms, in contrast, require access to the

stiffness matrices of the subdomains.

In the case of a scalar elliptic problem with constant coefficients in each substruc-

ture, a coarse space for a problem in three dimensions can be defined as the range of

the interpolation operator

Ih
Bu(x) = ∑

i,ℓ

u(Viℓ)θViℓ(x)+∑
i,k

ūEik θEik(x)+∑
i, j

ūFi j θFi j(x). (9)

Here, ūEik and ūFi j are averages over edges and faces, respectively. We obtain an

analogous expression for two dimensions by dropping the face terms.

With suitable local spaces, it is known that the resulting iterative substructuring

algorithm [9, Algo. 5.16] is quite satisfactory with a condition number bound of the

form C maxi (1+ log(Hi/hi)). The constant C is independent of the number of sub-

domains as well as jumps in the coefficients between the subdomains. By enriching

the coarse space by basis functions constructed from the same cutoff functions and

the rigid body modes similar results are possible for linear elasticity.
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These coarse spaces have also recently been combined with local components

based on overlapping subdomains, just as for traditional overlapping Schwarz meth-

ods; see [8, 9, 11, 12]. These methods are all additive Schwarz methods and they

are therefore definined in terms of a coarse subspace and many local spaces defined

by subspaces of finite element functions supported in the overlapping subdomains

Ω ′i . We note that there would be no additional technical issues should we choose to

work with multiplicative or hybrid Schwarz methods as in [9, Chap. 2]. The result-

ing algorithms have already proven quite successful for very large problems and an

implementation, by Clark Dohrmann, for massively parallel computing systems is

now part of the Salinas software system for structural dynamics problems developed

at Sandia National Laboratories, Albuquerque, NM.

In the case of Lipschitz subdomains, the weights for the face terms in an in-

terpolation formula such as (9) can easily be bounded by using Cauchy-Schwarz’s

inequality and an elementary trace theorem such as [29, Thm. 1.2]. For more gen-

eral subdomains, this argument breaks down but the average can be replaced by any

bounded functional, which depends only on the trace of the finite element function

on the face, and which reproduces constants. In two dimensions, the average over an

edge can simply be replaced by the maximum of the finite element function and we

can then use Lemmas 6 and 7 at the expense of an additional logarithmic factor. The

same approach would result in a factor Hi/hi in three dimensions. Instead the face

average over Fi j can be replaced by

(∇θFi j ,∇H(θFi j u))L2(Ωi)
/(∇θFi j ,∇θFi j)L2(Ωi)

. (10)

and the edge averages by similar expressions. We note that these expressions depend

exclusively on the trace of u on the interface Γ . In these formulas, we could equally

well integrate over Ω j or over Ωi∪Ω j. It is easy to see that this new interpolant also

reproduces constants as well as the face and edge terms separately. The energy of the

face term with the coefficient, given in (10), can be bounded by ‖∇H(θFi j u)‖L2(Ωi)
.

This will result in a bound with two logarithmic factors if we can prove a three

dimensional counterpart of Lemma 7.

The analysis of this domain decomposition method is carried out in the frame-

work of the abstract Schwarz theory as in [32, Chap. 2]. If exact solvers are used

for the coarse and local problems, each defined on an extended subdomain Ω ′i , we

primarily need a bound on the energy of the coarse interpolant that we have already

discussed. There are essentially no new technical difficulties in obtaining bounds for

the local terms in the decomposition of an arbitrary finite element function as in [32,

Assump. 2.2].

The coarse space can be enriched so that all rigid body modes are exactly repro-

duced using formulas similar to that of (10). A result for compressible elasticity can

then be obtained for two dimensions and John subdomains. The extension to three

dimensions will again essentially require the extension of Lemma 7 to edges and

faces in three dimensions.

We have established the following result in [10]. It holds for scalar elliptic prob-

lems as well as problems in compressible elasticity.
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Theorem 2. Let Ω ⊂ R2 be partitioned into nonoverlapping subdomains Ωi, which

are John domains, each with a shape regular triangulation. The condition number of

our domain decomposition method then satisfies

κ(Pad)≤C max
i

(1+Hi/δi)(1+ log(Hi/hi))
2,

where C is a constant which only depends the John and Poincaré parameters of the

subdomains, the number of colors required for the overlapping subdomains, and the

shape regularity of the elements. The bound is also independent on variations in the

coefficients across the interface Γ .

5 Almost Incompressible Elasticity

We also use the same overlapping Schwarz algorithm for almost incompressible elas-

ticity and this is the subject of two papers recently completed; see [11] and [10]. The

main emphasis is on regular subdomains, but the result also holds for subdomains

that are just John domains and for two dimensions, see [11, Section 6]. As previously

pointed out, we have only considered mixed finite element methods, with pressure

spaces of discontinuous finite element functions. Our main result is:

Theorem 3 (Condition Number Estimate). The condition number of our domain

decomposition method satisfies

κ(Pad)≤C(1+(H/δ ))3(1+ log(H/h))2,

where C is a constant, independent of the number of subdomains and their diame-

ters and the mesh size and which only depends on the number of colors required for

the overlapping subdomains and the shape regularity of the elements and the subdo-

mains. The bound is also independent of the Poisson ratio and of the variations in

the coefficients across the interface Γ .

We note that an early application of overlapping Schwarz methods to mixed for-

mulations of linear elasticity and Stokes problems is given in [19]. In that work,

the coarse spaces were based on the same mixed finite element methods on coarse

meshes and both continuous and discontinuous pressure spaces were considered. An

analysis of these methods was not provided, but their performance was shown to be

quite competitive with block diagonal and block triangular preconditioners, see [20].

The new algorithm uses a coarse space similar to that of (10). Just as for the com-

pressible elasticity case, it is enriched so as to contain all the rigid body modes. In

our work, there are a number of new challenges, in particular, results on subdomains

with bad aspect ratios are required. In addition, when applying the abstract Schwarz

theory, great care has to be taken when constructing the coarse component of the par-

titioning of the displacement fields and new ideas are also required when partitioning

the remaining part of an arbitrary finite element function into local components. For

details, see [11].
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