
Preface

This volume contains a selection of 41 refereed papers presented at the 18th Inter-

national Conference of Domain Decomposition Methods hosted by the School of

Computer Science and Engineering (CSE) of the Hebrew University of Jerusalem,

Israel, January 12–17, 2008.

1 Background of the Conference Series

The International Conference on Domain Decomposition Methods has been held

in twelve countries throughout Asia, Europe, the Middle East, and North America,

beginning in Paris in 1987. Originally held annually, it is now spaced at roughly

18-month intervals. A complete list of past meetings appears below.

The principal technical content of the conference has always been mathematical,

but the principal motivation has been to make efficient use of distributed memory

computers for complex applications arising in science and engineering. The leading

such computers, at the “petascale” characterized by 1015 floating point operations

per second of processing power and as many Bytes of application-addressable mem-

ory, now marshal more than 200,000 independent processor cores, and systems with

many millions of cores are expected soon. There is essentially no alternative to do-

main decomposition as a stratagem for parallelization at such scales. Contributions

from mathematicians, computer scientists, engineers, and scientists are together nec-

essary in addressing the challenge of scale, and all are important to this conference.

Though the conference has grown up in the wake of commercial massively par-

allel processors, it must be remarked that some important applications of domain de-

composition are not massively parallel at all. “Gluing together” just two subproblems

to effectively exploit a different solver on each is also part of the technical fabric of

the conference. Even as multiprocessing becomes commonplace, multiphysics mod-

eling is in ascendancy, so the International Conference on Domain Decomposition

Methods remains as relevant and as fundamentally interdisciplinary as ever.

The conference typically draws between 100 and 200 researchers concerned with

the large-scale computational solution of PDEs in areas such as fluid dynamics,
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structural mechanics, biomechanics, geophysics, plasma physics, radiation transport,

electricity and magnetism, flows in porous media, and the like. The conference is led

by the International Scientific Committee of DDM.ORG under a set of by-laws that

appear at the website www.ddm.org.

While research in domain decomposition methods is presented at numerous

venues, the International Conference on Domain Decomposition Methods is the only

regularly occurring international forum dedicated to interdisciplinary technical in-

teractions between theoreticians and practitioners working in the creation, analysis,

software implementation, and application of domain decomposition methods.

International Conferences on Domain Decomposition Methods:

• Paris, France, 1987

• Los Angeles, USA, 1988

• Houston, USA, 1989

• Moscow, USSR, 1990

• Norfolk, USA, 1991

• Como, Italy, 1992

• University Park (Pennsylvania), USA, 1993

• Beijing, China, 1995

• Ullensvang, Norway, 1996

• Boulder, USA, 1997

• Greenwich, UK, 1998

• Chiba, Japan, 1999

• Lyon, France, 2000

• Cocoyoc, Mexico, 2002

• Berlin, Germany, 2003

• New York City, USA, 2005

• St. Wolfgang/Strobl, Austria, 2006

• Jerusalem, Israel, 2008

International Scientific Committee on Domain Decomposition Methods:

• Petter Bjørstad, Bergen

• Martin Gander, Geneva

• Roland Glowinski, Houston

• Laurence Halpern, Paris

• Ronald Hoppe, Augsburg and Houston

• Hideo Kawarada, Chiba

• David Keyes, New York

• Ralf Kornhuber, Berlin

• Yuri Kuznetsov, Houston and Moscow

• Ulrich Langer, Linz

• Jacques Périaux, Paris

• Alfio Quarteroni, Lausanne
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• Zhong-ci Shi, Beijing

• Olof Widlund, New York

• Jinchao Xu, University Park

2 About the Eighteenth Conference

The eighteenth conference was chaired by Michel Bercovier, Bertold Badler Chair of

Scientific Computation at the School of Computer Science and Engineering, and held

on the Edmond J. Safra Campus of the Hebrew University, at Givat Ram, Jerusalem.

107 scientists from 15 countries attended. The conference included 12 invited ple-

nary lectures, 22 talks given in five Minisymposia, 30 contributed talks, and two

special sessions: one dedicated to the memory of Moshe Israeli, who should have

been on the organizing committee, and a special collection of ten talks, organized as

Minisymposium 5, given as an “Historical Perspective to Milestones in the Develop-

ment of Domain Decomposition.” Conference details remain on the conference web

site http://www.cs.huji.ac.il/dd18.

The twelve invited talks were:

• Achi Brandt, Weizmann Institute of Science and University of California at Los

Angeles), Principles of Systematic Upscaling

• Michael J. Holst, University of California, San Diego: Analysis and Convergent

Adaptive Solution of the Einstein Constraint Equations

• Ronald W. Hoppe, University of Houston and University of Augsburg: Adaptive

Multilevel Primal-Dual Interior-Point Methods in PDE Constrained Optimiza-

tion

• Claude Le Bris, Ecole Nationale des Ponts et Chaussées: Domain Decomposition

and Electronic Structure Calculations: a New Approach

• Patrick Le Tallec, Ecole Polytechnique: From Domain Decomposition to Homog-

enization in the Numerical Modelling of Materials

• Jan Martin Nordbotten, University of Bergen and Princeton University: Varia-

tional Scale Separation Methods

• Ilaria Perugia, University of Pavia: Plane Wave Discontinuous Galerkin Methods

• Olivier Pironneau, University of Paris-VI: Numerical Zoom for Multi-Scale

Problems

• Francois-Xavier Roux, ONERA and University of Paris-VI: Domain Decompo-

sition methods: Industrial Experience at Hutchinson

• Xuemin Tu, University of California at Berkeley: Balancing Domain Decompo-

sition Methods by Constraints (BDDC)

• Olof B. Widlund, Courant Institute, New York University: Accommodating Ir-

regular Subdomains in Domain Decomposition Theory

• Jinchao Xu, Pennsylvania State University: Robust Iterative Methods for Singu-

lar and Nearly Singular System of Equations

The papers in Part I of these proceedings are ordered alphabetically according to the

names of the plenary speakers.
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The “Milestone” lectures were:

• Olof Widlund, Courant Institute, New York University: Coarse Space Compo-

nents of Domain Decomposition Algorithms

• Petter Bjørstad, University of Bergen: To Overlap or not to Overlap

• Roland Glowinski, University of Houston: On Fictitious Domain Methods

• Jinchao Xu, Pennsylvania State University: On the Method of Subspace Correc-

tions

• Alfio Quarteroni, Ecole Polytechnique Fédérale de Lausanne: Heterogeneous

Domain Decomposition

• David Keyes, Columbia University: Domain Decomposition and High Perfor-

mance Computing

• Francois-Xavier Roux: The FETI Method

• Frédéric Nataf, Ecole Polytechnique: Optimized Schwarz Methods

• Xiao-Chuan Cai, University of Colorado and Boulder: Domain Decomposition

Methods for Nonlinear Problems

• Laurence Halpern, University of Paris 13: Space-Time Parallel Methods

These lectures were taped and will remain available at http://www.cs.huji.ac.

il/dd18/video.

The papers in Part II of these proceedings are ordered according to the order of

the five minisymposia, and inside each such group according to the names of the

speakers. Part III is organized similarly.

The session dedicated to the memory of Moshe Israeli (1940-2007) included

three lectures:

• Amir Averbuch, Tel Aviv University: Contributions of Prof. Moshe Israeli to

Scientific Computing

• Irad Yavneh, Technion: Automated Transformations of PDE Systems

• Roland Glowinski, University of Houston: Clustering Phenomena for Particulate

Flow in Spinning Cylinders

The Local Organizing Committee Members were:

• Michel Bercovier (Chairman), Hebrew University of Jerusalem

• Amir Averbuch, Tel Aviv University

• Pinhas Z. Bar-Yoseph (IACMM representative), Technion

• Matania Ben-Artzi, Hebrew University of Jerusalem

• Michael S. Engelman, Corporate VP, ANSYS

• Dan Givoli, Technion

• Raz Kupferman, Hebrew University of Jerusalem

• Zohar Yosibash, Ben Gurion University

The Organizers are grateful to the following companies and organizations for

their material support:

• Hutchinson Rubber, France

• Bercom, Israel
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• Hebrew University, including the Leibniz Research Center for Computer Science

and the Edmund Landau Center for Research in Mathematical Analysis

• Cray Ltd., Israel

• SGI, Israel

Thanks are also due to Uri Heinemann, webmaster, Neva Treistman and Naama

Yitzhak, administrative assistants who managed all the logistical details and pro-

duced the book of abstracts. Mohad Shini and Yehuda Arav oversaw the technical

material at the conference and Ouri Bercovier taped the “Milestone” talks. Finally,

the organizers would like to thank the Municipality of Jerusalem, and Yigal Amedi,

Deputy Mayor of Jerusalem, for the reception at the Town Hall.

3 About Domain Decomposition Methods

Domain decomposition, a form of divide-and-conquer for mathematical problems

posed over a physical domain, as in partial differential equations, is the most com-

mon paradigm for large-scale simulation on massively parallel distributed, hierar-

chical memory computers. In domain decomposition, a large problem is reduced to

a collection of smaller problems, each of which is easier to solve computationally

than the undecomposed problem, and most or all of which can be solved indepen-

dently and concurrently. Typically, it is necessary to iterate over the collection of

smaller problems, and much of the theoretical interest in domain decomposition al-

gorithms lies in ensuring that the number of iterations required is very small. Indeed,

the best domain decomposition methods share with their cousins, multigrid methods,

the property that the total computational work is linearly proportional to the size of

the input data, or that the number of iterations required is at most logarithmic in the

number of degrees of freedom of individual subdomains.

Algorithms whose work requirements are linear or log-linear in the size of the

input data in this context are said to be “optimal.” Near optimal domain decompo-

sition algorithms are now known for many, but certainly not all, important classes

of problems that arise science and engineering. Much of the contemporary interest

in domain decomposition algorithms lies in extending the classes of problems for

which optimal algorithms are known.

Domain decomposition algorithms can be tailored to the properties of the phys-

ical system as reflected in the mathematical operators, to the number of processors

available, and even to specific architectural parameters, such as cache size and the

ratio of memory bandwidth to floating point processing rate.

Domain decomposition has proved to be an ideal paradigm not only for execu-

tion on advanced architecture computers, but also for the development of reusable,

portable software. The most complex operation in a typical domain decomposition

method — the application of the preconditioner — carries out in each subdomain

steps nearly identical to those required to apply a conventional preconditioner to

the global domain. Hence software developed for the global problem can readily be

adapted to the local problem, instantly presenting lots of “legacy” scientific code for
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to be harvested for parallel implementations. Furthermore, since the majority of data

sharing between subdomains in domain decomposition codes occurs in two archety-

pal communication operations — ghost point updates in overlapping zones between

neighboring subdomains, and global reduction operations, as in forming an inner

product — domain decomposition methods map readily onto optimized, standard-

ized message-passing environments, such as MPI.

Finally, it should be noted that domain decomposition is often a natural paradigm

for the modeling community. Physical systems are often decomposed into two or

more contiguous subdomains based on phenomenological considerations, such as

the importance or negligibility of viscosity or reactivity, or any other feature, and

the subdomains are discretized accordingly, as independent tasks. This physically-

based domain decomposition may be mirrored in the software engineering of the

corresponding code, and leads to threads of execution that operate on contiguous

subdomain blocks. These can be either further subdivided or aggregated to fit the

granularity of an available parallel computer.
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Carsten Gräser, Uli Sack, Oliver Sander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A Recursive Trust-Region Method for Non-Convex Constrained

Minimization

Christian Groß, Rolf Krause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Robin Domain Decomposition Algorithm for Contact Problems:

Convergence Results

Mohamed Ipopa, Taoufik Sassi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Patch Smoothers for Saddle Point Problems with Applications to

PDE-Constrained Optimization Problems
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