
A Simple Uniformly Convergent Iterative Method for
the Non-symmetric Incomplete Interior Penalty
Discontinuous Galerkin Discretization

Blanca Ayuso1 and Ludmil T. Zikatanov2
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We introduce a uniformly convergent iterative method for the systems arising from
non-symmetric IIPG linear approximations of second order elliptic problems. The
method can be viewed as a block Gauß–Seidel method in which the blocks corre-
spond to restrictions of the IIPG method to suitably constructed subspaces. Numer-
ical tests are included, showing the uniform convergence of the iterative method in
an energy norm.

1 Introduction

In recent years, domain decomposition preconditioners and multilevel methods have
been developed for the efficient solution of the linear systems that arise from Dis-
continuous Galerkin (DG) discretizations of elliptic problems (see [5] and the ref-
erences therein). While most works deal with symmetric DG methods, very little
is known for preconditioning the non-symmetric ones. However, designing efficient
solvers for the resulting non-symmetric linear systems is of interest since they could
be used as building blocks for preconditioning DG discretizations of non-symmetric
PDEs (such as convection-diffusion problems). An important distinction between
non-symmetric and symmetric DG schemes (even for discretizations of selfadjoint
elliptic problems) is that the convergence analysis of the iterative methods is much
more involved. As shown numerically in [1], the symmetric part of the precondi-
tioned matrix of non-symmetric DG schemes (and in particular for the IIPG dis-
cretization considered here) can be indefinite and so the classical convergence theory
for GMRES (see [6]) cannot be applied and new theoretical tools are needed.

In this paper, we design an efficient solver by using a space decomposition of
the DG space introduced in [3]. We also extend some of the results from that work
to the case of variable diffusion coefficient. The proposed iterative method is a suc-
cessive subspace correction method for the non-symmetric IIPG discretization. We
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demonstrate via numerical experiments uniform convergence with respect to both the
penalty parameter and the number of degrees of freedom (dofs). In addition, as we
will discuss, the method considered here is more efficient than those proposed and
analyzed in [3]. However, the convergence of such method, although numerically
evident, is much more difficult to analyze and we do not present such analysis here.

2 Interior Penalty Discontinuous Galerkin Methods

Given f ∈ L2(Ω), we consider the following model problem

−∇ · (K∇u) = f in Ω , u = 0 on ∂Ω , (1)

where Ω ⊂ IRd, d = 2, 3 is a convex polygon or polyhedron and K ∈ (L∞(Ω))2ds
is a given piecewise constant permeability symmetric positive-definite tensor satis-
fying: 0 < c0‖ξ‖2 ≤ ξtK(x)ξ ≤ c1‖ξ‖2 ∀ξ ∈ IRd ∀x ∈ Ω.
Let Th be a shape-regular family of partitions of Ω into d-dimensional simplexes T
(triangles if d = 2 and tetrahedrons if d = 3) and let h = maxT∈Th

hT with hT de-
noting the diameter of T for each T ∈ Th. We assume Th does not contain hanging
nodes and K is constant on each T ∈ Th.
Let V DG denote the discontinuous finite element space defined by:

V DG =
{
u ∈ L2(Ω) : u|T ∈ P1(T ) ∀T ∈ Th

}
,

where P1(T ) denotes the space of linear polynomials on T . We denote by E oh and E∂h
the sets of all interior faces and boundary faces (edges in d = 2), respectively, and
we set Eh = Eoh∪E∂h . Following [2], we define the average and jump trace operators.
Let T+ and T− be two neighboring elements, and n+, n− be their outward normal
unit vectors, respectively (n± = nT±). Let ζ± and τ± be the restriction of ζ and τ
to T±. We set:

2{ζ} = (ζ+ + ζ−), [[ ζ ]] = ζ+n+ + ζ−n− on E ∈ Eoh,
2{τ} = (τ+ + τ−), [[ τ ]] = τ+ · n+ + τ− · n− on E ∈ Eoh,

and on E ∈ E∂h we set [[ ζ ]] = ζn and {τ} = τ . We will also use the notation

(u,w)Th
=

∑
T∈Th

∫
T

uwdx 〈u,w〉Eh
=

∑
E∈Eh

∫
E

uw ∀u,w,∈ V DG.

The approximation to the solution of (1) reads:

Find u ∈ V DG such that A(u,w) = (f, w)Th
, ∀w ∈ V DG. (2)

A(·, ·) is the bilinear form of the IIPG method (see [8]):

A(u,w) = (K∇u,∇w)Th
− 〈{K∇u}, [[w ]]〉Eh

+ 〈SE{K[[u ]]}, [[w ]]〉Eh
, (3)
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where SE = αEh
−1
E with αE ≥ α∗ > 0 for allE ∈ Eh and hE the length of the edge

E in d = 2 and the diameter of the face E in d = 3. We denote by α∗ a fixed value
of the penalty parameter for which A(·, ·) is coercive. In the numerical experiments
we take α∗ to be larger than (but close to) the critical value for which A(·, ·) is
only semidefinite. We point out that when α∗ is close to that critical value one may
expect less accurate DG solution due to the fact that the discrete problem is not
stable. We present interative methods which are uniformly convergent independently
of the value of α∗ as long as, α∗ is only just large enough to ensure coercivity of the
bilinear forms, even though the discretizations in this case lead to “nearly singular”
linear systems. This of course includes the cases of stable discretizations resulting
in accurate DG solutions, and hence the methods that we propose are aplicable to
the cases interesting from practical point of view. In general, αE might vary from
one face to another, but we assume that the possible variations on α are uniformly
bounded, namely

αmax

αmin
≈ 1, αmin := min

E∈Eh

αE , αmax := max
E∈Eh

αE . (4)

Together with A(·, ·), we consider also the bilinear form that results by computing
all the integrals in (3) with the mid-point quadrature rule:

A0(u,w) = (K∇u,∇w)Th
−〈{K∇u}, [[w ]]〉Eh

+〈SEP0
E({K[[u ]]}), [[w ]]〉Eh

, (5)

where P0
E : L2(E) −→ P0(E) is for each E ∈ Eh, the L2-orthogonal projection

onto the constants: P 0
E(u) := 1

|E|
∫
E
u, ∀u ∈ L2(E). Continuity and coercivity can

be shown for (3) in the DG energy norm (see [2]), which is equivalent to the norm
induced by the symmetric part of A(·, ·);

‖u‖ eA := Ã(u, u) Ã(u,w) =
A(u,w) +A(w, u)

2
∀u,w ∈ V DG .

We will also use the equivalent form of the IIPG method obtained via the weighted
residual approach introduced in [4]:

A(u,w) = 〈[[ K∇u ]], {w}〉Eo
h

+ 〈[[u ]], SE{K[[w ]]}〉Eh
∀u,w ∈ V DG,

A0(u,w) =〈[[ K∇u ]], {w}〉Eo
h
+ 〈[[u ]], SEP0

E({K[[w ]]})〉Eh
∀u,w ∈ V DG,

where we have already discarded the term (− ÷ (K∇u), w)Th
, since u ∈ V DG is

linear and K is constant on each T ∈ Th, and therefore (−÷ (K∇u), w)Th
=0. Next

result guarantees the spectral equivalence of A0(·, ·) and A(·, ·).

Lemma 1. Let A(·, ·) and A0(·, ·) be the bilinear forms of the IIPG method defined
in (3) and (5). Then, there exist c2 > 0 depending only on the shape regularity of Th
and c0 = c0(αmax, c1) > 0, such that:

c2A0(u, u) ≤ A(u, u) ≤ c0(αmax, c1)A0(u, u) ∀u ∈ V DG.
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3 Space Decomposition

In this section we introduce a new basis which provides a natural subspace splitting
of the linear V DG-space. We will show that if such basis is used the linear system
associated to (2) has special properties that allow for simple derivation of efficient
iterative methods for the non-symmetric IIPG method.

Let ϕE,T denote the canonical Crouzeix-Raviart (CR) basis function on T , dual
to the degree of freedom at the mass center mE of the face E, and extended by zero
outside T . Note that ϕE,T ∈ L2(Ω) and the support of ϕE,T is T . Then, for any
u ∈ V DG:

u(x) =
∑
T∈Th

∑
E∈∂T

uT (mE)ϕE,T (x) =
∑
E∈Eh

u+(mE)ϕ+
E(x)+

∑
E∈Eo

h

u−(mE)ϕ−
E(x).

with ϕ±
E(x) := ϕE,T±(x). Let V CR be the classical Crouziex-Raviart space:

V CR=
{
v ∈ L2(Ω) : v|T ∈ P1(T )∀T ∈ Th and P0

E [[ v ]] = 0 ∀E ∈ Eoh
}
.

Note that v = 0 at the midpointmE of each E ∈ E∂h . We also define the space

Z =
{
z ∈ L2(Ω) : z|T ∈ P1(T ) ∀T ∈ Th and P0

E{v} = 0 ∀E ∈ Eoh
}
. (6)

Observe that functions fromZ have nonzero jumps on each internal face and so they
can be deemed as highly oscillatory. Defining now:

ϕCRE = ϕE,T+ + ϕE,T− = 2{ϕE,T±} ∀E ∈ Eoh E = T+ ∩ T−,{
ψzE,T± = ϕE,T± − ϕE,T∓ ∀E ∈ Eoh E = T+ ∩ T−,

ψzE,T = ϕE,T ∀E ∈ E∂h , E = T ∩ ∂Ω,
we obtain a decomposition of the functions {ϕE,T} which provides following repre-
sentation for the spaces V CR and Z:

V CR = span{ϕCRE }E∈Eo
h

Z = span{ψzE,T }E∈Eo
h
⊕ span{ψzE,T }E∈E∂

h
.

(7)

Next result summarizes these observations.

Proposition 1. For any u ∈ V DG there exists a unique v ∈ V CR and a unique
z ∈ Z such that u = v + z , that is: V DG = V CR ⊕Z .

Thus, for all u ∈ V DG we have u = v + z with unique v and z, given by

v =
∑
E∈Eo

h

P0
E({u})ϕCRE (x), z =

∑
E∈Eh

P0
E

(
[[u ]] · n+

2

)
ψzE,T+(x).

Next Lemma gives a A-“orthogonality” property of the subspace splitting.

Lemma 2. Let u ∈ V DG be such that u = v + z with v ∈ V CR and z ∈ Z . Let
A0(·, ·) be the bilinear form defined in (5). Then,

A0(v, z) = 0 ∀ v ∈ V CR, ∀ z ∈ Z.
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3.1 Matrix Representation of the DG Bilinear Forms

We denote by A the discrete operator (Au,w) = A(u,w) (resp. (A0u,w) =
A0(u,w)). Let A (resp. A0) be the matrix representation of A (resp. A0) in certain
basis. The solution of (2) amounts to the solution of the linear system

Au = f , (8)

where u,f are the vector representations of the unknown u and the source f . If the
basis (7) is used for all these representations, we have:

u =
[

z
v

]
, A0 =

[
Azz0 0
Avz0 Avv0

]
, A =

[
Azz Azv

Avz Avv

]
. (9)

The blocks Azz, Azz0 and Avv, Avv0 correspond, respectively, to the stiffness matrices
that result when approximating the solution to (1) with the IIPG method restricted
to the Z and V CR subspaces. The block lower triangular form of A0 in (9) is a
consequence of Lemma 2. The solution of (8) with the block matrix A (or A0) as
in (9) will certainly involve solutions of smaller systems with Azz (or Azz

0 ) and Avv

(or Avv
0 ). Since, such systems are also solved in every iteration in the method we

propose, we next comment on methods for their solution:

Solution in V CR: Restricting the IIPG to the V CR space, we get:

A0(v, ϕ) = (K∇v,∇ϕ)Th
=

∑
T∈Th

(K∇v,∇ϕ)T ∀ v , ϕ ∈ V CR ,

A(v, ϕ) = (K∇v,∇ϕ)Th
+ 〈SE [[ v ]], {K[[ϕ ]]}〉Eo

h
∀v, ϕ ∈ V CR .

Hence, both Avv
0 and Avv are s.p.d. Moreover, note that A0 is the standard non-

conforming CR finite element method for the solution of ( 1). From the spectral equiv-
alence in Lemma 1, any system with Avv

0 or Avv can be efficiently solved by using
any of the known solvers for the CR approximation of ( 1); as those proposed in [7]
or [9].

Solution in the Z-space: Using the weighted residual formulation together with the
definition (6) of the Z space, it follows that ∀ z, ψ ∈ Z:

A0(z, ψ) = 〈SEP0
E([[ z ]]), {K[[ψ ]]}〉Eh

A(z, ψ) = 〈SE [[ z ]], {K[[ψ ]]}〉Eh
. (10)

Thus, restricted to Z , both A0 and A are symmetric and coercive (since we have set
αE ≥ α∗ > 0 for all E ∈ Eh). Therefore the blocks Azz

0 and Azz are both s.p.d.
Next Lemma establishes upper and lower bounds on their eigenvalues showing that
Azz0 and Azz are well conditioned.

Lemma 3. Let Z be the space defined in (6). Then for all z ∈ Z , it holds

c1(αmin)h−2‖K1/2z‖20,Th
≤ A0(z, z) ≤ A(z, z) ≤ c2(αmax)h−2‖K1/2z‖20,Th

,

where c1 and c2 depend on the mesh regularity and αmin, αmax are as in (4).
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The proof of similar result can be found in [3]. By virtue of this lemma and (4), denot-
ing by κ the condition number, we have that κ(Azz) = O(1) and κ2(Azz0 ) = O(1)
independent of the mesh size. Clearly, then a linear system with Azz can be solved
using the method of Conjugate Gradients (CG) and the number of CG iterations
needed for achieving a prescribed tolerance is also independent of the mesh size. It
is also easy to show that the matrix Azz

0 is diagonal, and hence Azz
0 can be also used

as a preconditioner for Azz .

4 A Uniformly Convergent Iterative Method

The general setting is a linear iterative algorithm with a given B(·, ·) ≈ A(·, ·):
Algorithm 1 Given initial guess u0, let uk, k ≥ 0 be the current approximation to
the solution. The next iterate uk+1 is then defined by

1. Solve B(ek, w) = (f, w)Th
−A(uk, w) ∀w ∈ V DG.

2. Update uk+1 = uk + ek.

In [3], the uniform convergence of Algorithm 1 is shown with B = Ã, the symmetric
part of A. Here we propose more efficient (in terms of computational work) algo-
rithm. It is suggested by the fact that A0 is lower triangular and the symmetric parts
ofA(·, ·) andA0(·, ·) are spectrally equivalent. This suggest to take the “block lower
triangular part” of A(·, ·) as B(·, ·), namely:

B(z + v, ψz + ϕ) := A(z, ψz) +A(z, ϕ) +A(v, ϕ), (11)

∀ v, ϕ ∈ V CR and ∀ z, ψz ∈ Z . The restrictions of this bilinear form on V CR and
Z are easy to find and the resulting iterative method can be then written in terms of
solution of the problems on the subspaces as follows:

Algorithm 2 Let u0 be a given initial guess. For k ≥ 0, and given uk = zk + vk,
the next iterate uk+1 = zk+1 + vk+1 is defined via the two steps:

1. Solve A(zk+1, ψ
z) = (f, ψz)Th

−A(vk, ψz) ∀ψz ∈ Z .
2. Solve A(vk+1, ϕ) = (f, ϕ)Th

−A(zk+1, ϕ) ∀ϕ ∈ V CR.

Observe that algorithm 2 requires two solutions of smaller s.p.d problems: one solu-
tion in Z-space (step 1 of the algorithm 2), and one solution in V CR-space (step 2
of algorithm 2). The solution of the subproblems on Z and on V CR can be done in
an efficient way as discussed in the previous section.

5 Numerical Results

We present a set of numerical experiments aimed at assessing the performance of the
proposed iterative method. We consider the model problem ( 1) on the unit square in
IR2 triangulated with a family of unstructured triangulations Th. In the tables given
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below J = 1 corresponds to the coarsest grid and each refined triangulation on level
J , J = 2, . . . , 4 is obtained by subdividing each of the triangles forming the grid on
level (J−1) into four congruent triangles. We set the permeability coefficient K = I,
to ease the comparison with the iterative methods for IIPG given in [ 3], where the
symmetric part of A, which we denote by Ã, is used as preconditioner. The coarsest
grid has n1 = 480 dofs and the finest (J = 4) has approximately n4 = 30, 720 dofs.
We have set α = Kα∗, and α∗ = 0.9 for J = 1 and α∗ = 1.3 for J ≥ 2. We
denote by B the matrix representation of B(·, ·), as given in (11), and by Ã the one
of Ã(·, ·). The latter being s.p.d. induces a norm IRnJ denoted here by ‖ · ‖eA. The
corresponding matrix norm is denoted below by the same symbol.

In Table 1 are given the rates of convergence measured in ‖ · ‖ eA-norm and in
Table 2 the asymptotic convergence rates (the spectral ρ(I− B−1A)).

Table 1. Rate of convergence: ‖I − B−1A‖eA for different levels and different values of the
penalty parameter α = Kα∗.

J = 1 J = 2 J = 3 J = 4

K = 1 0.541 0.530 0.571 0.595
K = 2 0.529 0.566 0.574 0.579
K = 4 0.576 0.610 0.616 0.619
K = 8 0.616 0.641 0.645 0.648

Table 2. Asymptotic convergence rate: ρ(I − B−1A) for different levels and different values
of the penalty parameter α = Kα∗.

J = 1 J = 2 J = 3 J = 4

K = 1 0.448 0.465 0.469 0.470
K = 2 0.451 0.465 0.469 0.470
K = 4 0.454 0.466 0.469 0.470
K = 8 0.456 0.467 0.470 0.470

The conclusion that we may draw from the above experiments is that the conver-
gence rate in ‖ · ‖eA norm is uniform with respect to the mesh size, and deteriorates
when increasing the value of the penalty parameter. The asymptotic convergence rate
is uniformly bounded with respect to bothK and the mesh size. The numerical tests
clearly show that the ‖ · ‖eA norm could be used to theoretically analyze the conver-
gence behavior of this iterative method. However, as we have already mentioned,
obtaining quantitative theoretical results that reflect and match the convergence rates
presented in Table 1 could be quite involved and is subject of a current research.
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