
Schwarz Waveform Relaxation Methods for Systems
of Semi-Linear Reaction-Diffusion Equations
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Summary. Schwarz waveform relaxation methods have been studied for a wide range of
scalar linear partial differential equations (PDEs) of parabolic and hyperbolic type. They are
based on a space-time decomposition of the computational domain and the subdomain itera-
tion uses an overlapping decomposition in space. There are only few convergence studies for
non-linear PDEs.

We analyze in this paper the convergence of Schwarz waveform relaxation applied to
systems of semi-linear reaction-diffusion equations. We show that the algorithm converges
linearly under certain conditions over long time intervals. We illustrate our results, and further
possible convergence behavior, with numerical experiments.

1 Introduction

Schwarz waveform relaxation methods are domain decomposition methods for evo-
lution problems, which were invented independently in [ 1, 6, 7], where the latter
paper only appeared several years later in print. These methods use a domain de-
composition in space, and a subdomain iteration in space-time to converge to the
underlying time dependent solution, see Fig. 1 for an illustration. Schwarz wave-
form relaxation methods exhibit different convergence behaviors, depending on the
underlying PDE and the time interval of the simulation: for the heat equation, conver-
gence is linear over long times, see [6], and superlinear over short times, see [7]. For
the wave equation, convergence is obtained in a finite number of steps for bounded
time intervals, see [4], where also an optimized variant is described, which was first
proposed in [3], both for hyperbolic and parabolic problems.

The analysis of Schwarz waveform relaxation methods for nonlinear problems is
significantly more difficult: for scalar semilinear reaction diffusion problems, see [ 2],
and for scalar convection dominated nonlinear conservation laws, see [ 5]. The pur-
pose of our paper is to present a first convergence analysis for systems of nonlinear
PDEs, for the model problem of semilinear reaction diffusion equations.
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2 Systems of Semi-linear Reaction Diffusion Equations

To simplify the presentation, we show our results for a system of two equations in
one spatial dimension, but the techniques used in the analysis can be generalized
to systems with more unknowns, and also to higher dimensions. We consider on a
bounded domainΩ ⊂ R the system of semi-linear reaction diffusion equations

∂tu−Δu + f(u) = 0 in Ω × (0, T ),
u(x, t) = g(x, t) on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

(1)

where u = (u1, u2) represents the vector of two unknown concentrations to be
determined, and f(u) = (f1(u1, u2), f2(u1, u2)). A well posedness result for such
systems of semi-linear reaction diffusion equations can be found in [ 8], see Corollary
3.3.5, p. 56.

Our analysis of the Schwarz waveform relaxation algorithm is based on com-
parison principles. Such principles have been studied in various contexts for system
(1), see for example [10, 11], and they often require quite elaborate proofs for the
generality employed. We state here precisely the results we need.

Lemma 1. Let u = (uj)1≤j≤2 ∈ C2,1(Ω × [0,∞))2 be a function for which each
component satisfies the inequality

∂tui −Δui + ai1(x, t)u1 + ai2(x, t)u2 > 0 in Ω × (0,∞),
ui(x, t) > 0 on ∂Ω × (0,∞),
ui(x, 0) > 0 in Ω.

(2)

If aij(x, t) ≤ 0 for i �= j and all (x, t) ∈ Ω × (0,∞), then ui(x, t) > 0 for all
(x, t) ∈ Ω × (0,∞).

The proof of this theorem by contradiction is a straightforward extension of the result
in the scalar case, see [2]. The strict inequalities in Lemma 1 can however be relaxed,
as we show next.

Lemma 2. Under the same assumptions as in Lemma 1, if

∂tui −Δui + ai1(x, t)u1 + ai2(x, t)u2 ≥ 0 in Ω × (0,∞),
ui(x, t) ≥ 0 on ∂Ω × (0,∞),
ui(x, 0) ≥ 0 in Ω,

(3)

then ui(x, t) ≥ 0 for all (x, t) ∈ Ω × (0,∞).

Proof. By performing the change of variables ũ i(x, t) := eCtui(x, t), where C is a
constant to be chosen, the first inequality of (3) can be rewritten as

∂tũi −Δũi − Cũi + ai1ũ1 + ai2ũ2 ≥ 0. (4)

Now let û = ũ + ε. If we rewrite (4) in terms of û, and choose the constant C such
that C < ai1 + ai2, we can apply Lemma 1, and taking the limit for ε → 0 shows
that ui(x, t) ≥ 0.
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3 Schwarz Waveform Relaxation Algorithm

We consider the semi-linear reaction diffusion system (1) in the domainΩ = (0, L).
We decompose the domain into two overlapping subdomains Ω 1 = (0, βL) and
Ω2 = (αL,L), α < β, as shown in Fig. 1. We denote by g1(t) := g(0, t) and by

T

x

t

Ω1 ∩ Ω2

Ω1 Ω2

0 LαL βL

Fig. 1. Space-time domain decomposition.

g2(t) := g(L, t). The classical Schwarz waveform relaxation algorithm constructs
at each iteration n approximate solutions vn, wn on subdomains Ωi, i = 1, 2, by
solving the equations

∂tv
n+1 −Δvn+1 + f(vn+1) = 0 in Ω1 × (0, T ),

vn+1(0, t) = g1(t) on (0, T ),
vn+1(βL, t) = wn(βL, t) on (0, T ),
vn+1(x, 0) = u0(x) in Ω1

∂tw
n+1 −Δwn+1 + f(wn+1) = 0 in Ω2 × (0, T ),

wn+1(αL, t) = vn(αL, t) on (0, T ),
wn+1(L, t) = g2(t) on (0, T ),
wn+1(x, 0) = u0(x) in Ω2.

(5)

In order to analyze the convergence of the Schwarz waveform relaxation algorithm
(5) to the solution u of (1), we denote the errors in subdomainΩ1 by dn := u− vn

and in Ω2 by en := u−wn. The error equations are

∂td
n+1 −Δdn+1 + f(u)− f(vn+1) = 0 in Ω1 × (0, T ),

dn+1(βL, t) = en(βL, t) on (0, T ),
∂te

n+1 −Δen+1 + f(u)− f (wn+1) = 0 in Ω2 × (0, T ),
en+1(αL, t) = dn(αL, t) on (0, T ),

(6)

where the initial and boundary conditions on the exterior boundaries are zero, since
the error vanishes there. Using a Taylor expansion with remainder term in Lagrange
form, we obtain for i = 1, 2

∂td
n+1
i −Δdn+1

i + ∂1fi(ξi,1, u2)dn+1
1 + ∂2fi(vn+1

1 , ξi,2)dn+1
2 = 0 in Ω1 × (0, T ),

∂te
n+1
i −Δen+1

i + ∂1fi(ξ′i,1, u2)en+1
1 + ∂2fi(wn+1

1 , ξ′i,2)e
n+1
2 = 0 in Ω2 × (0, T ),
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a linear system with variable coefficients, depending on the Jacobian of the non-
linearity.

Our convergence analysis is based on upper solutions for the errors, which are
constant in time.

Theorem 1 (Linear Convergence Estimate). Assume that ∂1f1 ≥ 0 and ∂2f2 ≥ 0,
and that there exists a constant a satisfying 0 < a < (π/L)2, such that −a ≤
∂1f2 ≤ 0 and −a ≤ ∂2f1 ≤ 0. Then the errors in the Schwarz waveform relaxation
algorithm (5) satisfy

sup
x∈Ω1

‖d2n+1(x, ·)‖∞ ≤ C1γ
k‖e0(βL, ·)‖∞, (7)

sup
x∈Ω2

‖e2n+1(x, ·)‖∞ ≤ C2γ
k‖d0(αL, ·)‖∞, (8)

where γ in (0, 1) is

γ =
(

sin(
√
aαL)

sin(
√
aβL)

)(
sin(

√
a(1− β)L)

sin(
√
a(1− α)L)

)
,

and the constants C1,2 are given by

C1 = sup
0<x<βL

sin(
√
ax)

sin(
√
aβL)

, C2 = sup
αL<x<L

sin(
√
a(L− x))

sin(
√
a(1− α)L)

.

Proof. Let M := max {||en1 (βL, ·)||∞, ||en2 (βL, ·)||∞} and define the function
d̃n+1 := M sin(

√
ax)/ sin(

√
aβL), which is the unique solution of the steady state

problem

−Δd̃n+1 − ad̃n+1 = 0, with d̃n+1(0) = 0, d̃n+1(βL) = M.

In order to show that d̃n+1 is a supersolution of the two errors dn+1
1 and dn+1

2 , we
consider the differences d̂n+1

1 := d̃n+1 − dn+1
1 and d̂n+1

2 := d̃n+1 − dn+1
2 , which

satisfy in Ω1 the system of equations

∂td̂
n+1
1 −Δd̂n+1

1 − ad̃n+1 − ∂1f1(ξ1,1, u2)dn+1
1 − ∂2f1(vn+1

1 , ξ1,2)dn+1
2 = 0,

∂td̂
n+1
2 −Δd̂n+1

2 − ad̃n+1 − ∂1f2(ξ2,1, u2)dn+1
1 − ∂2f2(vn+1

1 , ξ2,2)dn+1
2 = 0.

Adding and subtracting ∂1f1(ξ1,1, u2)d̃n+1 and ∂2f1(vn+1
1 , ξ1,2)d̃n+1 in the first

equation, and ∂1f2(ξ2,1, u2)d̃n+1 and ∂2f2(vn+1
1 , ξ2,2)d̃n+1 in the second equation,

we obtain

∂td̂
n+1
1 −Δd̂n+1

1 = −∂1f1(ξ1,1, u2)d̂n+1
1 − ∂2f1(vn+1

1 , ξ1,2)d̂n+1
2

+∂1f1(ξ1,1, u2)d̃n+1 + (a+ ∂2f1(vn+1
1 , ξ1,2))d̃n+1,

∂td̂
n+1
2 −Δd̂n+1

2 = −∂1f2(ξ2,1, u2)d̂n+1
1 − ∂2f2(vn+1

1 , ξ2,2)d̂n+1
2

+(a+ ∂1f2(ξ2,1, u2))d̃n+1 + ∂2f2(vn+1
1 , ξ2,2)d̃n+1.
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Under the assumptions of the theorem, and using the fact that d̃n+1 is strictly positive
in the interior of subdomainΩ1, we obtain the system of inequalities

∂td̂
n+1
1 −Δd̂n+1

1 + ∂1f1(ξ1,1, u2)d̂n+1
1 + ∂2f1(vn+1

1 , ξ1,2)d̂n+1
2 ≥ 0,

∂td̂
n+1
2 −Δd̂n+1

2 + ∂1f2(ξ2,1, u2)d̂n+1
1 + ∂2f2(vn+1

1 , ξ2,2)d̂n+1
2 ≥ 0.

Since ∂2f1(vn+1
1 , ξ1,2) ≤ 0 and ∂1f2(ξ2,1, u2) ≤ 0, we can now apply Lemma 2

to conclude that d̂n+1
1 = d̃n+1 − dn+1

1 ≥ 0 and d̂n+1
2 = d̃n+1 − dn+1

2 ≥ 0 in Ω1.
Using a similar argument for the sums, we obtain that also d̃n+1 + dn+1

1 ≥ 0 and
d̃n+1 + dn+1

2 ≥ 0, which implies by the positivity of d̃n+1 that their modulus is
bounded, and we have for i = 1, 2

|dn+1
i (x, t)| ≤ d̃n+1 = max {||en1 (βL, ·)||∞, ||en2 (βL, ·)||∞}

sin(
√
ax)

sin(
√
aβL)

.

Using a similar argument on subdomainΩ2, we obtain for i = 1, 2

|en+1
i (x, t)| ≤ max {||dn1 (αL, ·)||∞, ||dn2 (αL, ·)||∞}

sin(
√
a(L− x))

sin(
√
a(1− α)L)

.

Since the bounds are uniform in t, we obtain over a double step

‖dn+1(αL, ·)‖∞ ≤ γ‖dn−1(αL, ·)‖∞,
‖en+1(βL, ·)‖∞ ≤ γ‖en−1(βL, ·)‖∞,

and by induction (7) and (8). The fact that γ < 1 has been shown already in [2].

4 Numerical Results

We present numerical results for three different semilinear systems: the Belousov-
Zhabotinsky equations, the FitzHugh-Nagumo equations, and the Lotka-Volterra
system with migration. All numerical experiments are performed in the domain
Ω = (0, 1) and on the time interval (0, T ), with T = 12π. We discretize the equa-
tions with a standard three point finite difference method in space (with mesh size
Δx = 1

20 ), and a semi-implicit Euler time-discretization scheme (with time step
Δt = π

10 ), where implicit integration is used for the diffusive term and explicit in-
tegration for the reaction term. The space-time domain Ω is decomposed into two
overlapping domains (with overlap size δ = 2Δx) and we use Dirichlet conditions
at the interfaces.

4.1 Belousov-Zhabotinsky Equations

The Belousov-Zhabotinsky equations model non-equilibrium thermodynamics, re-
sulting in the establishment of a nonlinear chemical oscillator, see [9], p. 322 for
details. They are given by
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∂tu1 − 1
2∂xxu1 − u1(1− u1 − ru2) = 0,

∂tu2 − 1
2∂xxv + bu1u2 = 0. (9)

The hypotheses of Theorem 1 are satisfied for this system after performing the
change of variables ũ1 = 1− u1, ũ2 = u2, under the condition that the components
u1 and u2 remain positive. This condition holds, provided that the initial conditions
satisfy u1(x, 0) = u1,0(x) ≥ 0 and u2(x, 0) = u2,0(x) ≥ 0. Figure 2 shows the
linear convergence predicted by the convergence bound of Theorem 1.
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Fig. 2. Convergence history for the Belousov-Zhabotinsky equations.

4.2 FitzHugh-Nagumo Equations

The system of reaction diffusion equations

∂tu1 − 1
2∂xxu1 − f(u1) + u2 = 0,

∂tu2 − 1
2∂xxu2 − u1 + u2 = 0,

with f(u1) = u1 − u3
1 is called the FitzHugh-Nagumo equations, and describes

how an action potential travels through a nerve. It is the prototype of an excitable
system (e.g., a neuron) or an activator-inhibitor system: close to the ground state,
one component stimulates the production of both components, while the other one
inhibits their growth, see [9], p. 161 for details. This system does not satisfy the
hypotheses of Theorem 1, but nevertheless we observe linear convergence, as shown
in Fig. 3.

4.3 Lotka-Volterra Equations

The Lotka-Volterra equations with migration term are
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Fig. 3. Convergence history for the FitzHugh-Nagumo equations.

∂tu1 − 2
25∂xxu1 − u1(1− u2) = 0,

∂tu2 − 2
25∂xxu2 + u2(1− u1) = 0,

and they describe a biological predator-prey system, where both predator and prey
are migrating randomly. This system does not satisfy the hypotheses of Theorem 1,
and now we observe quite a different convergence behavior, as shown in Fig. 4.
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Fig. 4. Convergence history for the Lotka-Volterra equations with migration.
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5 Conclusions

Schwarz waveform relaxation algorithms often exhibit superlinear convergence, as
observed in the last example, see for example [2]. A corresponding convergence
analysis requires however quite different techniques from the ones we have presented
here, and will appear in an upcoming paper.
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