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1 Introduction

The topic of this paper is a preconditioning strategy based on non-nested meshes for
linear problems arising from finite element discretizations. Using a set of suitable
prolongation and restriction operators, we give an explicit construction of a nested
space hierarchy with corresponding bases. The analysis of the resulting multilevel
preconditioner can be carried out in a natural way by looking at the original non-
nested spaces and the connecting operators.

The present approach has the advantage, as compared with (purely) algebraic
multigrid methods, that the little geometric information entering the setup leads to
a very efficient multilevel hierarchy. Both grid and operator complexity are partic-
ularly small. Moreover, in our numerical experiments, we observed robustness of
the developed semi-geometric method with respect to jumps in the coefficients; its
performance does also not deteriorate for systems of partial differential equations.

Aside from [1, 6, 14], our semi-geometric framework is distinctly motivated by
the literature on domain decomposition methods for unstructured meshes, e. g., [ 4, 5],
and the auxiliary space method [15]. We refer to [8] for a more detailed review. To
our knowledge, the present paper is the first one to include a numerical comparison of
different, to a greater or lesser extent sophisticated candidates for the prolongation
between non-nested finite element spaces. We examine operators from or at least
motivated by [2, 4, 5, 7, 8, 10, 11].
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2 Multilevel Preconditioners Based on Non-nested Meshes

Let Ω ⊂ Rd be a Lipschitz domain of dimension d ∈ {2, 3}. For a right hand side
f ∈ H−1(Ω) and a positive function α ∈ L∞(Ω) bounded away from zero, we
consider the variational model problem

u ∈ H1
0 (Ω) : a(u, v) := (α∇u,∇v)L2(Ω) = f(v), ∀ v ∈ H1

0 (Ω). (1)

For a Galerkin discretization of (1), let (Tl)l∈N be a family of non-nested shape regu-
lar meshes of domains (Ωl)l∈N. For a fixed finest level L ≥ 2, assume for simplicity
thatΩL = Ω and, in addition,Ωl ⊃ Ω for all l ∈ {0, . . . , L− 1}. Let hl : Ωl → R+

be a suitable function, e. g., piecewise constant, reflecting the local mesh size of T l.
We denote the set of nodes of Tl by Nl and abbreviate Nl := |Nl|. At each level l,
we consider the space Xl of Lagrange conforming finite elements of first order with
incorporated homogeneous Dirichlet boundary conditions and denote its nodal basis
functions as (λlp)p∈Nl

with λlp(q) = δpq , p, q ∈ Nl. Finally, set ωp := supp(λlp) for
p ∈ Nl.

Now, the goal is to develop an efficient method for the iterative solution of the
ill-conditioned discrete problem

u ∈ XL : ALu = fL, (2)

with the stiffness matrix AL associated with XL, namely (AL)pq := a(λLp , λ
L
q ) for

p, q ∈ NL, and the right hand side fL given by (fL)p := f(λLp ). Here and in the
following, we do not aspire to distinguish strictly between an operator or function
and its representation with respect to a finite element basis.

We introduce a rather simple multilevel preconditioner CL. The delicate point,
though, is the construction of an appropriate hierarchy of spaces from the originally
unrelated spaces (Xl)l=0,...,L. For this purpose, let the spaces (Xl)l=0,...,L be con-
nected by the prolongation operators (Π l

l−1)l=1,...,L, namely

Π l
l−1 : Xl−1 → Xl, ∀ l ∈ {1, . . . , L}.

A closer examination of selected linear operators (Π l
l−1)l=1,...,L will be the key issue

of this paper. We construct a nested sequence of spaces (V l)l=0,...,L via VL := XL,
VL−1 := ΠL

L−1XL−1, and further

Vl := ΠL
L−1 · · ·Π l+1

l Xl, ∀ l ∈ {0, . . . , L− 2}.

That way, the images of the operators determine the space hierarchy.
With the nodal bases of the finite element spacesXl−1 andXl a matrix represen-

tation of Π l
l−1 in RNl×Nl−1 can be computed for l ∈ {1, . . . , L}. For convenience,

we set λ̃Lq = λLq for q ∈ NL. Then, a basis (λ̃lp)p∈Nl
of Vl for l ∈ {0, . . . , L − 1}

can recursively be defined by

λ̃lq :=
∑

p∈Nl+1

(Π l+1
l )pqλ̃l+1

p , ∀ q ∈ Nl.
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In this manner, basis functions at level l − 1 are nothing but linear combinations of
basis functions at level l induced by the operatorΠ l

l−1; they are piecewise linear with
respect to the finest mesh TL. In particular, one can easily see that the matrixΠ l

l−1 ∈
RNl×Nl−1 may be regarded as an algebraic representation of the natural embedding
of the novel spaces Vl−1 into Vl.

Then, as customary in a variational approach, the coarse level matrices with re-
spect to the bases (λ̃lp)p∈Nl

are assembled by Galerkin restriction in the following
setup phase of the multilevel hierarchy.

Algorithm 1 (Setup semi-geometric multigrid method)
Choose type of prolongation operator according to Sect. 3.
setupSGM (type, (Tl)l=0,...,L) {

for (l = L, . . . , 1) {
Compute prolongation operator:Π l

l−1

Compute coarse level operator: Al−1 = (Π l
l−1)

TAlΠ
l
l−1}

}
If AL is symmetric positive definite and if (Π l

l−1)l=1,...,L have full rank, the
respective coarse level operators (Al)l=0,...,L−1 are symmetric positive definite, too.
In particular, the standard smoothing operators such as ν steps of the (symmetric)
Gauß–Seidel or the Jacobi method, denoted by (S νl )l=1,...,L in the following, are
assumed to satisfy a smoothing property in V l.

Algorithm 2 (Semi-geometric V(ν, ν)-cycle)
For (the residual) r ∈ Vl compute the value Clr as follows.
SGM (l, Π l

l−1, Al, S
ν
l , r) {

if (l = 0)
Solve exactly: C0r← A−1

0 r
else {

Pre-smoothing step: x← Sνl (r)
Coarse level correction:

Restriction: r̃ ← (Π l
l−1)

T (r −Alx)
Recursive call: x̃← SGM (l − 1, Π l−1

l−2 , Al−1, S
ν
l−1, r̃)

Prolongation: x← x+Π l
l−1x̃

Post-smoothing step: Clr ← x+ Sνl (r −Alx)
}
return Clr

}
The condition number of the preconditioned operator, κ(CLAL), may be ana-

lyzed using the well-known result by Bramble, Pasciak, Wang, and Xu [ 3, Theorem 1]
achieved at the beginning of the nineties. However, we emphasize that the relevant
estimates, more precisely, the existence of H 1-stable operators QVl : VL → Vl,
l ∈ {0, . . . , L − 1} satisfying suitable L2-approximation properties, follow from
assumptions on the original spaces (Xl)l=0,...,L and the prolongation operators
(Π l

l−1)l=1,...,L rather than on the spaces (Vl)l=0,...,L. Note that the possible depen-
dence of the results on the number of levels is not ruled out. For the details we refer
to [8].
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Theorem 1 (Quasi-optimal preconditioning [8, Theorem 3.5]). LetΠ l
l−1 : Xl−1 →

Xl, l ∈ {1, . . . , L}, beH1-stable prolongation operators with the L2-approximation
properties

‖h−1
l (v −Π l

l−1v)‖L2(Ω) � ‖v‖H1(Ω), ∀ v ∈ Xl−1. (3)

Assume there are H1-stable mappings QX
l : XL → Xl, l ∈ {0, . . . , L − 1}, sat-

isfying the analogous L2-approximation properties. If, additionally, the operators
(Sνl )l=1,...,L have suitable smoothing properties, then the multilevel method CL de-
fined by Algorithms 1 and 2 is a quasi-optimal preconditioner, i. e., κ(CLAL) � 1
uniformly with respect to the mesh size.

3 Looking for Suitable Prolongation Operators

The presented preconditioner based on non-nested meshes is related to both agglom-
eration multigrid methods [6] and aggregation-based algebraic multigrid methods
[1, 12, 14]. The difference is that in our semi-geometric approach the coarsening re-
flected by the “agglomerates” or “aggregates”, respectively, and thus the structures
of the coarse level operators are in large part determined by the meshes (T l)l=0,...,L.
Still, the second ingredient to the setup in Algorithm 1 is a set of prolongation
operators (Π l

l−1)l=1,...,L. It turns out that the little geometric information that en-
ters the method is enough to generate an efficient space hierarchy with relatively
smooth coarse level functions. Especially, no additional prolongation smoother [ 14]
is needed.

The paradigm one should keep in mind is that, in the multigrid context, the L 2-
projection is a natural way to prolongate a coarse level correction to a finer mesh. As
the evaluation of the discrete L2-projection is computationally inefficient in case of
non-nested meshes, one has to seek an alternative.

In this section, some selected (intuitive and more elaborate) candidates for the
prolongation operators (Π l

l−1)l=1,...,L are specified. This is done in preparation for
the numerical studies in the last section of the paper; for a more detailed review
we refer to [8]. First, we consider the most elementary operator. In the literature on
domain decomposition methods for unstructured meshes, the standard finite element
interpolation I ll−1 : C0(Ω) ⊃ Xl−1 → Xl, u �→ Ill−1u :=

∑
p∈Nl

u(p)λlp, has
been proposed to be used with non-nested coarse meshes. Different proofs of the
H1-stability and the L2-approximation property (3) can be found in [4, 5, 13] in the
context of partition lemmas.

Whereas the above mapping operates on continuous functions only, the rest of the
operators comprise a weighting and are thus well-defined on appropriate Lebesgue
spaces. The Clément quasi-interpolation operator first introduced in the influential
paper [7] is defined by

Rll−1 : L2(Ω) ⊃ Xl−1 → Xl, u �→ Rll−1u :=
∑
p∈Nl

(Qpu)(p)λlp, (4)
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with the L2-projections Qp onto the local polynomial spaces Pr(ωp) of degree
r ∈ N. It is probably most famous for its frequent use in proofs of the reliability
of a posteriori error estimators. In Sect. 4, we employRl

l−1 with r = 0.
The followingL2-quasi-projection operator has been analyzed in [2] to construct

approximation operators replacing the L2-projection from the space H 1(Ω) to the
discrete spaces Xl. It is defined by

Q̂ll−1 : L2(Ω) ⊃ Xl−1 → Xl, u �→ Q̂ll−1u :=
∑
p∈Nl

(λlp, u)L2(Ω)∫
ωp
λlp

λlp. (5)

Note that this is the operator obtained from the discrete L2-projection by lumping
the mass matrix associated with Xl.

In [8], we have investigated a new operator, primarily motivated by [ 10, 11]. For
its definition, choose a set of functions (ψ lp)p∈Nl

with ψlp ∈ C0(ωp) for all p ∈ Nl
such that (ψlp, λlq)L2(Ω) = δpq

∫
ωp
λlp, ∀ p, q ∈ Nl. Then, the pseudo-L2-projection

operator P ll−1 : L2(Ω) ⊃ Xl−1 → Xl is defined by a Petrov–Galerkin variational
formulation with trial space Xl and test space Yl := span{ψlp| p ∈ Nl} �⊂ C0(Ω)
yielding the representation formula

P ll−1u =
∑
p∈Nl

(ψp, u)L2(Ω)∫
ωp
λlp

λlp. (6)

For this last operator, the authors have proved theH 1-stability and theL2-approximation
property in case of shape regular meshes. Therefore, the multilevel preconditionerC L

defined by Algorithms 1 and 2 is quasi-optimal with the choice Π l
l−1 = P ll−1 for

l ∈ {1, . . . , L}; see [8, Theorem 5.7]. Note that the present considerations do not
yield estimates which are independent of the number of levels L, though.

Let us remark that, if the meshes Tl−1 and Tl are nested, the operators Rl
l−1

and Q̂ll−1 do not coincide with the L2-projection, which is the same as the finite
element interpolation in this case; see [8]. In contrast, the operator P ll−1 is always a
projection, especially the L2-projection in the nested case.

To evaluate (4), (5) or (6) in the setup phase (Algorithm 1) exactly, one has to
compute the intersections of elements in consecutive meshes. In practice, good re-
sults may be obtained by an approximate numerical integration via a quadrature rule
solely based on the finer mesh.

Without loss of generality, we may assume that the prolongation operators do not
contain any zero columns; otherwise the respective coarse degrees of freedom are
not coupled to the original problem (2) and should be removed in Algorithm 1. As
a measure for the efficiency of the multilevel hierarchy itself, in addition to iteration
counts or convergence rates, we put forward the notions of grid complexity C gr and
operator complexity Cop defined by

Cgr :=
L∑
l=0

Nl/NL, Cop :=
L∑
l=0

nl/nL, (7)
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that are common in the AMG literature. Here, n l is the number of non-zero entries
in Al, l ∈ {0, . . . , L}. A prevalent technique to keep Cgr and Cop small (and the
application of Algorithm 2 efficient) is truncation of the prolongation operators by
deleting the entries that are smaller than ε tr = 0.2 times the maximal entry in the
respective row and rescaling afterwards; see [12].

4 Numerical Results

Because of the geometric nature of the coarsening procedure, it is important to ana-
lyze its dependence on the meshes. This is done, in each single study, by choosing an
independently generated fine mesh TL (of varying mesh size) approximating the unit
ball. In the fashion of an auxiliary space method [15], we use nested coarse meshes
(Tl)l<L associated with the unit cube (structured; 189, 1,241 and 9,009 nodes, re-
spectively) and standard interpolation between the levels l < L. Note that the differ-
ent fine meshes yield different coarse spaces (Vl)l<L although the respective coarse
meshes are unchanged.

We report on the convergence of the conjugate gradient method (until the resid-
ual norm is below 10−16) preconditioned by the semi-geometric V(3, 3)-cycle (Al-
gorithm 2) with symmetric Gauß–Seidel smoothing. In view of the affinity of our
method to aggregation-based AMG, it is reasonable to examine whether an over-
relaxation of the coarse level correction can improve the convergence; see [ 1, 12].
For the model problem (1) and d = 3, we identify the scaling factors 1.0, 1.1, 1.1,
1.2 for the four operators, respectively, in Fig. 1. But note that over-correction is
not really necessary. The results of our experiments can be found in Table 1 for a
constant coefficient α = 1 and in Table 2 for a coefficient function α constant on
each element in TL with a randomly chosen value 1 or 10,000. For each operator, we
give the number of iteration steps and an approximation of the asymptotic conver-
gence rate. The last column (with caption “none”) always contains the values for the
one-level pcg with the symmetric Gauß–Seidel method as preconditioner.

A semi-geometric approach has the best chance of generating a very efficient
multilevel hierarchy. This can be verified by noting that the complexities ( 7) are
quite small in all numerical studies, namely down to Cgr = 1.035 and Cop = 1.070,
at the same time with convergence rates of 0.0713 and 0.0747, respectively, for the
scalar problem with 204,675 nodes; see Table 3.

Finally, let us remark that the convergence behavior does not deteriorate for sys-
tems of PDEs; see Table 4. This is in contrast to most algebraic multigrid methods;
we refer to [9] for a discussion and an exemplary comparison of different algorithms.
Certainly, one reason for this robustness is the fact that we treat the different physical
unknowns separately, e. g., the (scalar) displacement in direction of a chosen basis
of Rd in case of (linear) elasticity problems. Thus, the coarse level hierarchy is the
same in each component. In the present linear elastic example, we observe a superior
performance of the projections I and P over the operatorsR and Q̂.
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Table 1. Convergence of the pcg for a constant coefficient α. In this and the other convergence
studies (see Tables 2 and 4), we give the number of needed pcg iterations and an approximate
asymptotic convergence rate for Π = I, R, bQ, P . Both quantities appear to be reasonably
bounded.

#dof I R bQ P None
47,348 11 0.0287 11 0.0243 11 0.0230 12 0.0394 91 0.5832
53,460 12 0.0398 11 0.0255 12 0.0345 12 0.0330 97 0.6418
64,833 12 0.0381 12 0.0362 12 0.0288 12 0.0279 102 0.6434
72,525 13 0.0486 12 0.0333 12 0.0311 12 0.0288 106 0.6576
87,244 13 0.0503 13 0.0437 13 0.0452 12 0.0313 114 0.6954

127,787 14 0.0572 15 0.0469 13 0.0421 14 0.0416 125 0.6792
204,675 16 0.0761 16 0.0684 16 0.0737 16 0.0713 146 0.7358

Table 2. Convergence of the pcg for α randomly jumping between 1 and 10,000.

#dof I R bQ P None
47,348 15 0.0405 14 0.0235 14 0.0270 14 0.0296 98 0.6222
53,460 15 0.0387 14 0.0286 14 0.0277 14 0.0305 103 0.6767
64,833 15 0.0393 15 0.0357 15 0.0388 15 0.0408 109 0.6810
72,525 17 0.0653 15 0.0399 15 0.0342 15 0.0374 110 0.6470
87,244 16 0.0454 16 0.0439 16 0.0408 16 0.0412 121 0.7225

127,787 18 0.0586 17 0.0524 17 0.0553 17 0.0504 130 0.6880
204,675 20 0.0831 20 0.0790 20 0.0802 20 0.0747 152 0.7206

Table 3. Grid and operator complexity depend on the prolongation type and the problem size.
As we keep the coarse meshes fixed (but not the coarse spaces) throughout the presented
studies, both Cgr and Cop decrease with increasing problem size.

#elem. #dof Cgr(I) Cop(I) Cgr(R) Cop(R) Cgr( bQ) Cop( bQ) Cgr(P) Cop(P)

262,365 47,348 1.144 1.364 1.144 1.490 1.144 1.430 1.143 1.338
297,620 53,460 1.128 1.320 1.128 1.418 1.128 1.373 1.127 1.296
361,907 64,833 1.106 1.263 1.106 1.330 1.106 1.298 1.105 1.242
405,256 72,525 1.095 1.233 1.095 1.291 1.095 1.263 1.095 1.214
490,617 87,244 1.079 1.190 1.079 1.230 1.079 1.210 1.079 1.173
719,951 127,787 1.055 1.128 1.055 1.149 1.055 1.138 1.055 1.117

1,161,926 204,675 1.035 1.076 1.033 1.085 1.033 1.080 1.035 1.070

Table 4. Linear elastic problem on the unit ball with Poisson ratio 0.3. Some differences in
the performance of the prolongation operators may be observed.

#dof I R bQ P None
142,044 17 0.0915 24 0.1969 23 0.1754 19 0.1194 137 0.7398
160,380 17 0.0974 25 0.1936 23 0.1667 19 0.1319 146 0.7936
194,499 18 0.1068 28 0.2215 26 0.1767 20 0.1473 152 0.7501
217,575 18 0.1101 29 0.2297 26 0.2107 21 0.1447 160 0.8159
261,732 19 0.1285 31 0.2382 27 0.2095 21 0.1600 175 0.8334
383,361 20 0.1439 32 0.2547 28 0.2279 22 0.1692 186 0.8395
614,025 24 0.1895 34 0.2411 31 0.2267 24 0.1969 217 0.8760
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Fig. 1. Over-relaxation of the coarse level correction Πl
l−1ex in Algorithm 2. Study of the

number of pcg iterations depending on the scaling factor for the choices Π = I, R, bQ, P
(from left to right). Each line represents a different problem size.
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