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Summary. In the numerical simulation of electromagnetic wave radiation from an antenna,
the antenna is assumed to be a perfectly conducting obstacle. It was shown numerically that
the antenna can be effectively modeled by a highly conducting region occupied by it. The
Finite Difference Time Domain method combined with Perfectly Matched Layer gives a flexi-
ble numerical methodology for this problem. We apply the method to analyze several radiation
problems with different types of antennas such as a birdcage and the Yagi types where the delta
gap type power supply model is adopted. For treating an unbounded outer region numerically,
we apply a newly developed technique to discretize the PML region with little artificial re-
flection. Theoretical justification of this procedure for a 1D case was presented in DD17, and
effectiveness of this technique was also demonstrated numerically for 2D and 3D cases. We
observe a good 3D numerical performance of the method and confirm its usefulness though
theoretical justification remains as a future problem.

1 FDTD Method and PML

In this paper, we consider a numerical method for electromagnetic wave propagation
in an unbounded domain. The standard numerical method for computing an electro-
magnetic wave is the FDTD (Finite Difference Time Domain) method introduced by
[6]. To solve the problem in the unbounded domain, one must truncate the outer un-
bounded domain appropriately. For this purpose the PML (Perfectly Matched Layer)
which was firstly introduced by [1] is popularly used, where one introduces an arti-
ficial magnetic conductivity σ∗ in this region. When we discretize the equations in
the PML, some artificial reflections are observed in a solution by the original scheme
of Berenger. We firstly review a new discretization scheme with fewer reflection in-
troduced by the present authors, [3] for a 1D problem and also applied for 2D and
3D problems. This scheme applied to the 1D problem does not cause any artificial
reflection at least in the constant σ∗ region. Although we have not proved mathe-
matically the non-existence of the artificial reflection for 2D and 3D cases, we have
succeeded in validating the method for these cases numerically.
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Secondly, we develop a 3D numerical method to simulate propagation of an RF
(Radio-Frequency) wave emitted by various antennas such as the Yagi antennas and
birdcage coil antennas used for an MRI (Magnetic Resonance Imaging) device.

In the FDTD method, a finite difference method with a space-time staggered
mesh is used for discretization of the Maxwell equation. To solve the problem in an
unbounded region, we employ the PML and introduce an artificial absorption term
σ∗ in the equation to attenuate the wave there. In order to make the computational
domain finite we impose a perfectly reflecting boundary condition on the outermost
boundary of the PML. The additional boundary condition may introduce a further
extra artificial reflection, but the reflection is supposed to be controllable within a
negligible level in most applications. The Maxwell equation in non-PML region is
written as

∂

∂t
E(t, x) = −σ(x)

ε
E(t, x) +

1
ε
∇×H(t, x), (1)

∂

∂t
H(t, x) = − 1

μ
∇× E(t, x), (2)

and in the PML region as

∂

∂t
E(t, x) = −σ(x)

ε
E(t, x) +

1
ε
∇×H(t, x), (3)

∂

∂t
H(t, x) = −σ

∗(x)
μ

H(t, x)− 1
μ
∇× E(t, x), (4)

with E = (Ex, Ey , Ez) the electric field, H = (Hx, Hy, Hz) the magnetic field, ε
the electric permittivity, μ the magnetic permeability, σ the electric conductivity and
σ∗ the artificial magnetic conductivity. In the followings, we assume without loss
of generality, that ε = μ = 1, and also impose an impedance matching condition,
σ∗ = σ.

By introducing σ∗, the solution in the non-PML region does not change numer-
ically in 1D, 2D and 3D cases, and we can prove it theoretically in 1D case (see
[3]).

In both PML and non-PML regions, in accordance with the idea of [ 1], we split
the variablesE andH into two components as Ex = Exy +Exz , Hx = Hxy +Hxz

and so on. By using these variables the Maxwell equation is expressed as

∂

∂t
Exy(t, x) = −σy(x)Exy(t, x) +

∂(Hzx(t, x) +Hzy(t, x))
∂y

, (5)

∂

∂t
Exz(t, x) = −σz(x)Exz(t, x) −

∂(Hyz(t, x) +Hyx(t, x))
∂z

, (6)

and similar equations derived by permutatingx, y, z cyclically and changing the roles
of E andH . The formulation for one dimensional case is seen in [ 3].

New FDTD discretization scheme for the 3D equations is
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with the coefficients,

Axy = e−σy(j)Δt and Bxy =
Δt

Δy
e−σy(j)Δt/2, (8)

and so on. In the previous standard scheme by Berenger, the corresponding coeffi-
cients are

Axy = e−σy(j)Δt, and Bxy =
1− eσy(j)Δt

σy(j)Δy
. (9)

There is another simplified scheme where the coefficients are given as

Axy =
1− σy(j)Δt

2

1 + σy(j)Δt
2

and Bxy =
Δt

Δy(1 + σy(j)Δt
2 )

. (10)

We show comparison of performance among these schemes by numerical exam-
ples in Fig. 1. It can be concluded that our new scheme is superior to others.
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Fig. 1. Comparison of reflection waves at t = 0.6 by Berenger’s scheme (left), simplified
scheme (middle) and new scheme (right).

To check the validity of our method in 3D case, we show a time evolution of the
absolute value of the Poynting’s vector at an observation point for an initial value
problem with a delta function like initial profile. Figure 2 shows that the artificial
reflection from the PML region is negligible, although we observe some small re-
flection wave from the PML region as well as from the outermost boundary.

2 Basic Formulation of Antenna Problem

Among variety of electromagnetic radiation and scattering problems the antenna
problem is a special case where a scatterer or an obstacle is a low dimensional sin-
gular object.
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The antenna is usually modeled as a perfectly conducting obstacle, which con-
stitutes a lower dimensional region in the computational domain such as a flat plate
or a parabola panel as 2D region and a line or an array of lines as 1D region.

To make the numerical simulation, we need to calculate the electric current den-
sity profile on the line antennas. For this purpose, Pocklington’s integral equation for
electric current is already known in the case of a straight line antenna, for which the
standard numerical methodology is the moment method. There are, however, several
demerits of the method, i.e., it is effective only for the time harmonic problem and is
not so easy to extend it to more general antenna configurations.

On the other hand, the new method developed by us is free from these demerits as
our methodology is based on the FDTD method combined with the PML for solving
time dependent problems, and treats the antenna as an electrically highly conduc-
tive region, and the current density on the antenna can be calculated afterwards if
necessary.

A typical example of an array of line antennas is the Yagi antenna consisting of a
power supplier, reflectors and guiders (see [2]). In Fig. 3, the energy density profiles
of the wave on x–y plane and x–z plane are shown. The computational region is
approximately 2.2×2.2×2.2 with the PML having the thickness of 6h = 6×2−6 ≈
0.1 with the mesh size h = 2−6. The antenna lengths of the supplier, the reflector and
two guiders are 29h, 31h, 29h and 27h, respectively. At the midpoint of the supplier,
we assume a delta gap power supply, i.e., an external source which supplies a time
harmonic electric field sin(2πft)/h with frequency f = 1.0 on one mesh point. The
spatial mesh size h is h = 2−6 = 1/64 as stated before and the temporal mesh size τ
is τ = h/2 = 2−7 = 1/128. Figure 3 shows four spatial profiles of electromagnetic
energy density of the radiating wave from a Yagi antenna at time t = t 0, t0+(1/4)f ,
t0 + (1/2)f and t0 + (3/4)f with sufficiently large t0 = 5.0 � f = 1.0. One of
the most interesting and important problems is to arrange the components of the
line antennas so that the best performance of electromagnetic wave radiation to the
desirable direction is attained. We leave this problem to be solve in our future study.
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Fig. 2. Time evolution of the absolute value of Poynting’s vector for an initial value problem.
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3 Application to MRI Problem

As an application of our method, we show an example of the electromagnetic ra-
diation and scattering problems appearing in MRI (Magnetic Resonance Imaging)
which is an imaging technology based on NMR (Nuclear Magnetic Resonance).
There are many researches on human susceptibility related to a mobile phone (see
for example, [4, 5]) because use of electromagnetic wave of radio frequency range is
considered to have some unfavorable heating effect on the human body. Though the
calculation of SAR (Specific Absorption Rate) is important for this purpose, only a
few studies have been carried out on this problem up to now concerning MRI. Hence
it is challenging to develop a methodology for the estimation of SAR concerning
MRI.

For this purpose we first simulate numerically the propagation of the electromag-
netic wave excited by a birdcage coil in MRI device by the FDTD method with the
PML. Then by putting a phantom of a human body inside the birdcage coil we esti-
mate SAR in the phantom, by which the possible change of SAR under different coil
configuration can be studied.

In Fig. 4 we show examples of numerical simulation on heating of a phantom in
MRI with birdcage antennas. The size of computational domain is 2.2×2.2×2.2 m 3

and the thickness of PML is 0.1 m, and the frequency of power supply is 64 MHz. In
this example, some specific parts of the phantom body are heated more in comparison
with other parts. For example, we observed several typical phenomena, i.e., SAR
becomes higher at the positions nearest to the coil as a head and a waist, and also at
edges of the body, especially at the edges of convex shape as a head, a shoulder and

 0  0.5  1  1.5  2
 0

 0.5

 1

 1.5

 2

     100
      10
       1
     0.1

    0.01

x

y

 0  0.5  1  1.5  2
 0

 0.5

 1

 1.5

 2

     100
      10
       1
     0.1

    0.01

x

y

 0  0.5  1  1.5  2
 0

 0.5

 1

 1.5

 2

     100
      10
       1
     0.1

    0.01

x

y

 0  0.5  1  1.5  2
 0

 0.5

 1

 1.5

 2

     100
      10
       1
     0.1

    0.01

x

y

Fig. 3. Examples of numerical simulation on spatial profiles of electromagnetic energy density
for a Yagi antennas at different times.
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a waist. Naturally, we see that the SAR decreases with increasing the coil dimension
(length and radius) and increasing the distance between the body and the coil. The
detailed analysis including the optimization of the antenna coil configurations and
others based on this methodology is our future problem.

4 Summary and Future Problems

We now summarize our study as follows:

(i) We tested the efficiency of our methodology through a basic antenna configura-
tion such as the Yagi antennas.

(ii) We applied our new scheme to the 3D MRI problem with a source birdcage coil
antenna, and computed SAR for a phantom body inside the coil.

Future problems are

(i) the optimal design of various line antennas by using appropriate optimization
algorithm (such as gradient method and/or GA);

(ii) the investigation of possible variation of SAR when we increase or decrease the
number of leading wires connecting two circular wires of birdcage coil;

(iii) the study of the effect of static background magnetic field configuration as well
as the effect of the way of impressing a source voltage through background elec-
tric circuit;

(iv) the usage of more realistic CAD models of a human body in its geometric shape
and with physical and/or physiological parameters.
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Fig. 4. Examples of numerical simulation on heating of a phantom in MRI with bird cage
antennas.
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