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1 Introduction

Multiple scattering of waves is one of the important research topics in scientific and
industrial fields. A number of numerical methods have been developed to compute
waves scattered by several obstacles, e.g., acoustic waves scattered by schools of
fish, water waves by ocean structures, and elastic waves by particles in composite
materials.

In this paper, we focus on the acoustic scattering, which is described as solutions
of boundary value problems of the Helmholtz equation in an unbounded domain. In
order to compute such solutions numerically, the following method is well known
[2, 6]: one introduces an artificial boundary and imposes an artificial boundary con-
dition on it to reduce the original problem on the unbounded domain to a problem on
a bounded domain enclosed by the artificial boundary. Recently, [ 4] have developed
a new method by extending the method above to the multiple scattering problem.
In their method, one introduces several disjoint artificial boundaries, each of which
surrounds one of the obstacles, and imposes an exact non-reflecting boundary con-
dition on such artificial boundaries. This boundary condition is called the multiple
DtN (Dirichlet-to-Neumann) boundary condition.

In this paper, we parallelize their method by a parallel nonoverlapping Schwarz
method due to [5]. The original unbounded domain is then decomposed into bounded
subdomains, each of which is surrounded by one of the artificial boundaries, and the
remaining unbounded subdomain. A particular feature of this method is including a
problem in the unbounded subdomain, imposing Sommerfeld’s radiation condition.
This problem is reduced to a certain problem on the multiple artificial boundaries by
the natural boundary reduction due to [2].

The remainder of this paper is organized as follows. In Sect. 2 we introduce
the exterior Helmholtz problem, and present a parallel Schwarz algorithm and its
convergence theorem, which is proved by the energy method due to [ 1] in Sect. 5. We
introduce the multiple DtN operator associated with the problem on the unbounded
subdomain in Sect. 3. We describe how to reduce the problem on the unbounded
subdomain to the problem on the multiple artificial boundaries in Sect. 4.
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2 Exterior Helmholtz Problem and Schwarz Method

We consider the following exterior Helmholtz problem:⎧⎪⎪⎨⎪⎪⎩
−Δu− k2u = f in Ω∞,

u = 0 on
⋃J
j=1 ∂Oj,

lim
r−→+∞

r
1
2

(
∂u

∂r
− iku

)
= 0,

(1)

where k is a positive constant, Oj (1 ≤ j ≤ J) are bounded open sets of R2,

Ω∞ := R2 \
(⋃J

j=1Oj
)

, and f is a given datum. Assume that Ω∞ is connected, f

has a compact support, and ∂Oj (1 ≤ j ≤ J) are of class C∞. Problem (1) has a
unique solution belonging toH 2

loc(Ω∞) for every compactly supported f ∈ L2(Ω∞)
(see [7]), where

Hm
loc(Ω∞) := {u | u ∈ Hm(B) for all bounded open set B ⊂ Ω∞} (m ∈ N).

2.1 Domain Decomposition

Suppose that for each 1 ≤ j ≤ J , there exists a ball Bj with radius aj and center cj
such that Oj ⊂ Bj , supp f ⊂

⋃J
j=1 Bj , and Bj ∩ Bl = ∅ if j �= l. We introduce,

for every 1 ≤ j ≤ J , artificial boundaries: Γj :=
{
x ∈ R2 | |x− cj| = aj

}
and

bounded domains: Ωj := Bj \ Oj . We further introduce the following unbounded

domain:Ω0 := R2 \
(⋃J

j=1 Bj

)
. Then we can decomposeΩ∞ into subdomainsΩ0,

Ω1, . . ., ΩJ : Ω∞ =
⋃J
j=0Ωj , and we haveΩj ∩Ωl = ∅ if j �= l.

2.2 A Parallel Schwarz Method

To solve problem (1), we consider the following parallel Schwarz method of Lions:

(1) Choose u0
0 and u0

j (1 ≤ j ≤ J).
(2) For n = 1, 2, . . ., solve⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δun0 − k2un0 = 0 in Ω0,

−∂u
n
0

∂rj
− ikun0 = −

∂un−1
j

∂rj
− ikun−1

j on Γj (1 ≤ j ≤ J),

lim
r−→+∞

r1/2
(
∂un0
∂r

− ikun0

)
= 0,

(2)
and for 1 ≤ j ≤ J ,⎧⎪⎪⎨⎪⎪⎩

−Δunj − k2unj = f in Ωj ,
unj = 0 on ∂Oj,

∂unj
∂rj

− ikunj =
∂un−1

0

∂rj
− ikun−1

0 on Γj .
(3)
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Here, for each 1 ≤ j ≤ J , (rj , θj) are polar coordinates with origin cj , and then the
normal derivative on Γj is expressed by ∂/∂rj . As is well known, problems (2) and
(3), respectively, have a unique solution.

Theorem 1. Let u, un0 , and unj (1 ≤ j ≤ J) be the solutions of problems (1), (2),
and (3), respectively. If

∂u0
0

∂rj
− iku0

0

∣∣∣∣
Γj

and −
∂u0

j

∂rj
− iku0

j

∣∣∣∣∣
Γj

∈ H1/2(Γj) (1 ≤ j ≤ J), (4)

then we have un0 −→ u in L2(Γ ) and unj −→ u in H1(Ωj) (1 ≤ j ≤ J) as

n −→ +∞, where Γ :=
⋃J
j=1 Γj .

3 Multiple DtN Operator

We introduce the multiple DtN operator

S : H1/2(Γ )

⎛⎝∼= J∏
j=1

H1/2(Γj)

⎞⎠ −→ H−1/2(Γ )

⎛⎝∼= J∏
j=1

H−1/2(Γj)

⎞⎠
defined by

S : p =

⎡⎢⎢⎢⎣
p1

p2

...
pJ

⎤⎥⎥⎥⎦ −→
⎡⎢⎢⎢⎢⎢⎢⎢⎣

− ∂u
∂r1

∣∣∣
Γ1

− ∂u
∂r2

∣∣∣
Γ2

...

− ∂u
∂rJ

∣∣∣
ΓJ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where pj := p|Γj (1 ≤ j ≤ J), and u is the solution of the following problem:⎧⎪⎪⎨⎪⎪⎩
−Δu− k2u = 0 in Ω0,

u = p on Γ,

lim
r−→+∞

r1/2
(
∂u

∂r
− iku

)
= 0.

To represent S in an implicit form involving some operators which can be ana-
lytically represented, we introduce, for each 1 ≤ j ≤ J , an operator

Gj : H1/2(Γj) −→ H1
loc(Dj)

defined by Gj [ϕj ] := wj , where wj ∈ H1
loc(Dj) is the solution of the following

problem: ⎧⎪⎪⎨⎪⎪⎩
−Δwj − k2wj = 0 in Dj ,

wj = ϕj on Γj ,

lim
rj−→+∞

r
1
2
j

(
∂wj
∂rj

− ikwj

)
= 0,

(5)

where Dj :=
{
x ∈ R2 | |x− cj | > aj

}
.
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Theorem 2. If u ∈ H1
loc(Ω0) satisfies⎧⎨⎩ −Δu− k2u = 0 in Ω0,

lim
r−→+∞

r
1
2

(
∂u

∂r
− iku

)
= 0,

then there uniquely exists a ϕ ∈ H 1/2(Γ ) such that

u =
J∑
j=1

Gj [ϕj ] in Ω0. (6)

Proof. See [4]. &'
Taking the traces and the normal derivatives ∂/∂rj of both sides of (6) on Γj

(1 ≤ j ≤ J), we get

u = ϕj +
∑
l 
=j
Pjl[ϕl] on Γj (7)

and
∂u

∂rj
= −Sj[ϕj ]−

∑
l 
=j
Tjl[ϕl] on Γj , (8)

respectively, where

Pjl[ϕl] := Gl[ϕl]|Γj
, −Tjl[ϕl] :=

∂

∂rj
Gl[ϕl]

∣∣∣∣
Γj

(1 ≤ j �= l ≤ J),

−Sj [ϕj ] :=
∂

∂rj
Gj [ϕj ]

∣∣∣∣
Γj

(1 ≤ j ≤ J).

We here remark that Sj is the single DtN operator associated with (5). Deleting ϕj
from (7) and (8), we can see that the multiple DtN operator S can be represented as
follows:

S = TC−1, (9)

where

C :=

⎡⎢⎢⎢⎣
I P12 · · · P1J

P21 I · · · P2J

...
...

. . .
...

PJ1 PJ2 · · · I

⎤⎥⎥⎥⎦ , T :=

⎡⎢⎢⎢⎣
S1 T12 · · · T1J

T21 S2 · · · T2J

...
...

. . .
...

TJ1 TJ2 · · · SJ

⎤⎥⎥⎥⎦ .
As we all know, we can obtain an analytical representation of G j by separation

of variables, and hence, from this representation, we can derive analytical represen-
tations of the operators Sj , Tjl, and Pjl.

Note that we have C ∈ Isom(H1/2(Γ ), H1/2(Γ )), the proof of which will ap-
pear elsewhere.
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4 How to Solve Problem (2)

If un0 is the solution of problem (2), then we have

−∂u
n
0

∂rj
= Sun0 |Γj

(1 ≤ j ≤ J).

Hence we can reduce problem (2) to the following problem on Γ : find p ∈ H 1/2(Γ )
such that

Sp− ikp = λ, (10)

where λ ∈ H−1/2(Γ ) and λ = −∂un−1
j /∂rj − ikun−1

j on Γj . This process is often
called the natural boundary reduction (cf. [2]). The solution p of this problem gives
the trace on Γ of the solution un0 of problem (2).

By (9), we have

(S − ikI)p = λ⇐⇒ (T − ikC)C−1p = λ.

Hence, we can solve (10) by executing the following two processes:

• Solve (T − ikC)ϕ = λ.
• Compute p = Cϕ.

Equation (T − ikC)ϕ = λ can be written in the following variational form: find
ϕ ∈ H1/2(Γ ) such that

〈Sjϕj , ψj〉j +
∑
l 
=j

∫
Γj

Tjl [ϕl]ψj dΓj

−ik

⎛⎝∫
Γj

ϕjψj dΓj +
∑
l 
=j

∫
Γj

Pjl [ϕl]ψj dΓj

⎞⎠
= 〈λj , ψj〉j ∀ψj ∈ H1/2(Γj), 1 ≤ ∀j ≤ J, (11)

where 〈·, ·〉j is the duality pairing between H−1/2(Γj) and H1/2(Γj).
We can practically compute (11) by using the analytical representations of the

operators Sj , Tjl, and Pjl. Discretizing (11) by a FEM, we need to solve a linear
system whose matrix is full and of order the number of nodes on Γ .

5 Proof of Theorem 1

We can prove Theorem 1 by the energy technique due to [1]. Let u, un0 , and unj (1 ≤
j ≤ J) be the solutions of problems (1), (2), and (3), respectively. Put enj := u−unj
(0 ≤ j ≤ J). We should keep in mind that if (4) is satisfied, then en0 ∈ H2

loc(Ω0) and
enj ∈ H2(Ωj) (1 ≤ j ≤ J) for all n ∈ N.

We now define a pseudo energy En by

En :=
∫
Γ

|Sen0 − iken0 |
2
dΓ +

J∑
j=1

∫
Γj

∣∣∣∣∂enj∂rj
− ikenj

∣∣∣∣2 dΓj .
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Lemma 1. {En}∞n=1 is a decreasing sequence.

Proof. Because enj satisfies the homogeneous equation in Ωj and the homogeneous
boundary condition on ∂Oj , we have

Im

{∫
Γj

∂enj
∂rj

enj dΓj

}
= 0 (12)

for every n ∈ N and for each 1 ≤ j ≤ J . Hence, for every n ∈ N, we have the
following energy equality:

En+1 = En + 4k Im
{∫

Γ

Sen0 e
n
0 dΓ

}
. (13)

Since en0 also satisfies the homogeneous equation in Ω0, we have

Im
{∫

Γ

Sen0 e
n
0 dΓ

}
= −kR

∞∑
μ=−∞

Im

{
H

(1)′
μ (kR)

H
(1)
μ (kR)

}∣∣en0,μ(R)
∣∣2 (14)

for an arbitrary positive number R satisfying Γ ⊂ {x ∈ R2 | |x| < R}, where H (1)
μ

is the first kind Hankel function of order μ, and en0,μ(R) is the μth Fourier coefficient
of en0 on ΓR := {x ∈ R2 | |x| = R}. As we all know, we have

Im

{
H

(1)′
μ (kR)

H
(1)
μ (kR)

}
> 0 (15)

for all μ ∈ Z. Therefore, combining (13), (14) and (15) completes the proof of
Lemma 1. &'

Proposition 1. We have S − ikI ∈ Isom(H 1/2(Γ ), H−1/2(Γ )).

Proof. We can prove from the two facts that S − ikI is a bounded linear operator
fromH1/2(Γ ) onto H−1/2(Γ ), and that the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δu− k2u = 0 in Ω0,

− ∂u

∂rj
− iku = λ on Γj (1 ≤ j ≤ J),

lim
r−→+∞

r1/2
(
∂u

∂r
− iku

)
= 0

has a unique solution belonging to H 1
loc(Ω0) for every λ ∈ H−1/2(Γ ). &'

Proof of Theorem 1
Proposition 1 assures us that there exists a positive constant C such that

‖en+1
0 ‖H1/2(Γ ) ≤ C‖λ‖H−1/2(Γ ), (16)

where λj = −∂enj /∂rj − ikenj . Using (12) and Lemma 1, we have
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‖λ‖2L2(Γ ) =
J∑
j=1

∫
Γj

∣∣∣∣∂enj∂rj
− ikenj

∣∣∣∣2 dΓj ≤ E1. (17)

From (16) and (17), {en0} is a bounded sequence in H 1/2(Γ ), and hence {en0} has a
subsequence {enl

0 } such that enl
0 −→ e0 in H1/2(Γ ) weakly. This indicates that for

all q ∈ H1/2(Γ ),∫
Γ

Senl
0 q dΓ = 〈enl

0 , S
∗q〉 −→ 〈e0, S∗q〉 = 〈Se0, q〉, (18)

where S∗ is the DtN operator corresponding to the incoming radiation condition, and
〈·, ·〉 is the duality pairing betweenH−1/2(Γ ) and H1/2(Γ ).

On the other hand, from Lemma 1, (14), and (15), we have

E1 ≥
∫
Γ

|Sen0 − iken0 |2 dΓ

=
∫
Γ

{
|Sen0 |2 + k2|en0 |2

}
dΓ − 2k Im

{∫
Γ

Sen0e
n
0 dΓ

}
≥

∫
Γ

|Sen0 |2 dΓ.

This implies that there exists a subsequence of {Senl
0 }, still denoted by {Senl

0 },
which converges in L2(Γ ) weakly. Thus, we can see from (18) that Se0 ∈ L2(Γ )
and Senl

0 −→ Se0 in L2(Γ ) weakly. Further, by the compact imbedding ofH 1/2(Γ )
in L2(Γ ), enl

0 −→ e0 in L2(Γ ) strongly, and hence we have∫
Γ

Senl
0 e

nl
0 dΓ −→

∫
Γ

Se0e0 dΓ.

Now, from (13), we get

En+1 = E1 + 4k
n∑

m=1

Im
{∫

Γ

Sem0 e
m
0 dΓ

}
,

and hence Im
{∫
Γ Se

m
0 e

m
0 dΓ

}
−→ 0. Thereby we have Im

{∫
Γ Se0e0 dΓ

}
= 0.

This implies e0 = 0. Therefore, we can conclude that un0 −→ u in L2(Γ ).
We can show that unj −→ u in H1(Ωj) (1 ≤ j ≤ J) in the same way as in the

proof of Theorem 2.6 in [1]. &'

6 Concluding Remarks

We demonstrated the convergence of the parallel Schwarz method of Lions for mul-
tiple scattering problems. Many techniques of acceleration of the convergence of the
Schwarz method have been developed (see [3, 8]). The investigation of acceleration
techniques is yet to be done for the Schwarz method presented in this paper.
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