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Summary. The Additive Schwarz Method with Harmonic Extension (ASH) was introduced
by Cai and Sarkis (1999) as an efficient variant of the additive Schwarz method that converges
faster and requires less communication. We show how ASH, which is defined at the matrix
level, can be reformulated as an iteration that bears a close resemblance to the parallel Schwarz
method at the continuous level, provided that the decomposition of subdomains contains no
cross points. In fact, the iterates of ASH are identical to the iterates of the discretized parallel
Schwarz method outside the overlap, whereas inside the overlap they are linear combinations
of previous Schwarz iterates. Thus, the two methods converge with the same asymptotic rate,
unlike additive Schwarz, which fails to converge inside the overlap (Efstathiou & Gander
2007).

1 The Methods of Lions, AS, RAS and ASH

Let Ω ⊂ Rn be a bounded open set. Suppose we want to solve the elliptic PDE

Lu = f on Ω, u = g on ∂Ω. (1)

Based on the theoretical work of [8, 9] introduced the first domain decomposition
methods for solving (1). In the two-subdomain case, let Ω1, Ω2 ⊂ Ω such that Ω1 ∪
Ω2 = Ω and Ω1 ∩ Ω2 �= ∅. We also define Γi = ∂Ω ∩ Ω̄i and Γij = ∂Ωi ∩ Ω̄j for
i, j = 1, 2. Then Lions’ parallel Schwarz method calculates the subdomain iterates
uki : Ωi → R, i = 1, 2 via

Luk+1
i = f on Ωi, uk+1

i = g on Γi, uk+1
i = uk3−i on Γi,3−i. (2)

If we discretize the parallel Schwarz method (2), we obtain for k = 0, 1, . . . ,

A1uk+1
1 = f1 −A12uk2 , A2uk+1

2 = f2 −A21uk1 , (3)

where Ai = RiAR
T
i , Aij = (RiA − AiRi)RTj , and Ri restricts the set V =

{1, . . . , n} of all nodes onto the subset Vi of nodes that lie in Ωi. The above method
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trivially generalizes to the case of many subdomains if there are no cross points, i.e.,
Ωi ∩Ωj ∩Ωl = ∅ for distinct i, j and l:

Aiuk+1
i = fi −

∑
j 
=i

Aijukj , for all i. (4)

Note that (4) does not define a global approximate solution Uk that is valid over
the entire domain Ω. In fact, if the subdomains overlap, there is no unique way of
defining Uk in terms of the ukj until the method has converged. Thus, one cannot
directly consider parallel Schwarz as a preconditioner for the global system and use
it in combination with Krylov subspace methods.

In order to turn parallel Schwarz into a preconditioner, [ 3] introduced the additive
Schwarz (AS) method, which is equivalent to a block Jacobi iteration when the sub-
sets Vj are disjoint. However, when the subdomains overlap, the method no longer
converges inside the overlapping regions ([4, 6]). To obtain a convergent method, [2]
introduced the methods of Restricted Additive Schwarz (RAS) and Additive Schwarz
with Harmonic Extension (ASH), which are defined as follows: let Ω̃j be a partition
of Ω such that Ω̃j ⊂ Ωj . Let Ṽj be the nodes that lie in Ω̃j , and R̃l be a matrix of
the same size as Rl, such that

[R̃l]ij =

{
1 if [Rl]ij = 1 and j ∈ Ṽl,
0 otherwise.

Then, starting from an initial guess of the global solution U 0, RAS calculates

Uk+1 = Uk +
∑
j

R̃Tj A
−1
j Rj(f − AUk), (5)

whereas ASH computes

Uk+1 = Uk +
∑
j

RTj A
−1
j R̃j(f − AUk). (6)

By restricting either the residual or the update to Ṽj , RAS and ASH avoids the re-
dundant updates that occur within the overlap when Additive Schwarz is used. There
exist other methods capable of eliminating the non-converging modes in AS, such
as the method of Restricted Additive Schwarz with Harmonic Overlap (RASHO),
which was proposed by [1].

It is clear that the RAS and ASH preconditioners are transposes of each other
whenA is symmetric; one thus expects the two methods to converge at a similar rate.
In the case where A is an M -matrix, [5] proved that RAS and ASH both converge
as an iterative method. For the RAS method, [6] showed that the iterates produced
are equivalent to those of the discretized parallel Schwarz method, regardless of the
number of subdomains and whether cross points are present. On the other hand, to
our knowledge no such interpretation exists for the ASH method. Our goal is to offer
such an interpretation in the case where cross points are absent.
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2 Assumptions and the Main Result

Before stating the main result, we make some assumptions that are algebraic mani-
festations of the fact that there are no cross points. The first one is self-evident based
on the definition of the restriction operatorsRk.

Assumption 1 (No cross points) For distinct i, j and l, we have

RiR
T
j RjR

T
l = 0. (7)

The next pair of assumptions ensures that ∂Ωj \ ∂Ω are partitioned into r con-
nected components, each of which must be a subset of only one Ω̃i for some i (see
Fig. 1).
Assumption 2 (Partition of internal boundaries) For all i �= j, we must have

(Ri − R̃i)(ARTj −RTj Aj) = 0, (8a)

(RiA−AiRi)(RTj − R̃Tj ) = 0. (8b)

The two conditions are simply transposes of each other; hence, they will be satisfied
simultaneously if A has a symmetric nonzero pattern. Also note that when i = j, the
two relations are trivially satisfied: since R̃i = R̃iR

T
i Ri, we have

(Ri − R̃i)(ARTi −RTi Ai) = RiAR
T
i︸ ︷︷ ︸

Ai

−RiRTi︸ ︷︷ ︸
I

Ai − R̃iRTi RiARTi︸ ︷︷ ︸
Ai

+R̃iRTi Ai = 0.

(9)

Ω1 Ω2

Ω3

Ω̃1 Ω̃2

Ω̃3

(a) (b)

Fig. 1. Some examples of decompositions into subdomains, with solid lines delimitingΩi and
dashed lines delimiting the Ω̃i. In (a), Assumptions 1–2 are satisfied, whereas in (b) they are
not, because the stencil of ART

1 − RT
1 A1 along the thick portion of ∂Ω1 would extend into

Ω2 \ Ω̃2, violating (8a).
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We can interpret (8a) as follows. For any vector w over Vj , the vectors ARTj w and
RTj Ajw agree inside Vj , but ARTj w may have nonzero entries outside Vj (which
RTj Ajw cannot have). For a PDE, these entries are located along the boundary ∂Ω j .
The assumption then says that these entries must correspond to nodes that are either
inside Ω̃i or completely outside Ωi, as in Fig. 1(a). In Fig. 1(b), the thick portion of
∂Ω1 is inside Ω2 \ Ω̃2, violating (8a).

We are now ready to state our main result.

Theorem 1. Suppose U0 = 0 and Assumptions 1 and 2 are satisfied. Then the iter-
ates Uk of the ASH method are related to the iterates vki of the discretized parallel
Schwarz method with v0

i = 0 and

Aiv1
i = R̃if, (10)

Aivki = Rif −
∑
j 
=i

Aijvk−1
j (k ≥ 2) (11)

via the relation

N∑
j=1

RTj vkj = Uk +
(∑

j

RTj Rj − I
)
Uk−1. (12)

Remark Since
∑
j RjR

T
j − I is zero outside the overlap, it is clear that the iterates

of ASH and Parallel Schwarz are identical outside the overlap, whereas inside they
are linear combinations of the current and previous iterates.

3 Proof of the Main Result

We assume throughout this section that Assumptions 1 and 2 hold. We let

rk := f −AUk, δukj := A−1
j R̃j(f −AUk), ukj :=

k−1∑
l=0

δulj .

From (6) it is clear that Uk =
∑

j R
T
j ukj . We also define vkj such that v0

j = u0
j = 0,

v1
j = u1

j , and

vkj = ukj +
∑
i
=j

RjR
T
i uk−1

i (k ≥ 2). (13)

The following properties are elementary and will be used repeatedly:

(i) RiRTi = I for all i,
(ii) R̃Ti Ri = RTi R̃i = R̃Ti R̃i for all i,

(iii) R̃iRTi = RiR̃
T
i = R̃iR̃

T
i for all i,

(iv)
∑

j R̃
T
j R̃j = I .

Lemma 1. For all k ≥ 1 and for all i, we have (Ri − R̃i)rk = 0.
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Proof. Fix i and let k ≥ 0. We calculate

(Ri − R̃i)rk = RiR
T
i (Ri − R̃i)rk = Ri

[∑
j

R̃Tj R̃jR
T
i (Ri − R̃i)rk

]
.

Since RTj Rj and RTi (Ri − R̃i) are diagonal matrices, they commute, and hence

(Ri − R̃i)rk = Ri

[∑
j

RTi (Ri − R̃i)R̃Tj R̃jrk
]

= RiR
T
i (Ri − R̃i)

∑
j

R̃Tj R̃jr
k.

Noting that RiRTi = I and R̃Tj R̃j = RTj R̃j , we can rewrite R̃jrk as Ajδukj . Then
(8a) and (9) together give

(Ri − R̃i)rk = (Ri − R̃i)
∑
j

ARTj δu
k
j

= (Ri − R̃i)A(Uk+1 −Uk) = (Ri − R̃i)(rk − rk+1).

Cancelling (Ri − R̃i)rk from both sides gives the required result.

Proof of Theorem 1 We first prove the relation (12). We have∑
j

RTj vkj =
∑
j

RTj ukj +
∑
j

RTj
∑
l 
=j

RjR
T
l uk−1

l

= Uk +
∑
j

RTj Rj

(∑
l

RTl uk−1
l −RTj uk−1

j

)
= Uk +

(∑
j

RTj Rj

)
Uk−1 −

∑
j

RTj uk−1
j

= Uk +
(∑

j

RTj Rj − I
)
Uk−1,

as required. Now let AiΓ := RiA − AiRi be the boundary operator. Multiplying
both sides of (12) by AiΓ on the left gives

AiΓ
∑
j

RTj vkj = AiΓUk +AiΓ

(∑
j

RTj Rj − I
)
Uk−1

= AiΓUk +AiΓ

(∑
j

(RTj Rj − R̃Tj Rj)
)
Uk−1

= AiΓUk +AiΓ

(∑
j

(Rj − R̃j)TRj
)
Uk−1 = AiΓUk,

sinceAiΓ (Rj−R̃j)T = 0 for all i and j by (8b) and (9). When i �= j,AiΓRTj = Aij
by definition, and when i = j, we have

AiΓR
T
i = (RiA−AiRi)RTi = RiAR

T
i −AiRiRTi = Ai −Ai · I = 0.



444 F. Kwok

So in fact we have

AiΓUk = AiΓ
∑
j

RTj vkj =
∑
j 
=i

Aijvkj . (14)

We now prove the main statement of the theorem. For k ≥ 0, we have

Aivk+1
i = Aiuk+1

i +Ai
∑
j 
=i

RiR
T
j ukj

= Aiδuki +Aiuki +Ai
∑
j 
=i

RiR
T
j ukj

= R̃i(f − AUk) +Ai
∑
j

RiR
T
j ukj

= R̃if − R̃iAUk +AiRiUk.

If k = 0, then all terms other than R̃if vanish because U0 = 0; we have thus proved
(10). We continue by assuming k ≥ 1:

Aivk+1
i = R̃if − R̃iAUk + (RiA−AiΓ )Uk

= R̃if + (Ri − R̃i)AUk −AiΓUk

= R̃if + (Ri − R̃i)(f − rk)−AiΓUk

= Rif − (Ri − R̃i)rk︸ ︷︷ ︸
=0

−
∑
j 
=i

Aijvkj .

by Lemma 1 and (14), and (11) follows.

4 Convergence Rate

Given the close relationship between ASH and Parallel Schwarz, one would expect
that the two methods converge at the same speed. This is true if the overlap subprob-
lem is well posed.

Theorem 2 (cf. [7]). LetRo be the restriction operator onto the union of all overlaps,
i.e., Ro is a full row-rank matrix such that RTo Ro =

∑
j R

T
j Rj − I . If RoARTo is

non-singular, then the ASH method (6) converges if and only if the parallel Schwarz
method (10), (11) converges. In addition, when both methods converge, they do so at
the same asymptotic rate.

To illustrate this theorem, we solve Poisson’s equation on the unit square with
homogeneous Dirichlet boundary condition. We use a 20× 20 grid, which is divided
into two subdomains with a two-row overlap (Fig. 2(a)). We then solve this problem
using (i) the discrete Parallel Schwarz method with Dirichlet boundary conditions,
as defined in Eq. (3), (ii) the ASH method, and (iii) overlapping Additive Schwarz.
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The convergence history for all three methods is shown in Fig. 2(b). We see
that ASH converges linearly, unlike AS, which does not converge because of the
overlap. In addition, the curves for Parallel Schwarz and ASH are very close to one
another, and their slopes are asymptotically equal. We also see from Table 1 that the
ratio of successive errors for parallel Schwarz alternates between 0.5737 and 0.5895
(which is typical for a two-subdomain problem), whereas ASH converges at a rate of
0.5815 =

√
0.5737 · 0.5895, the geometric mean. Thus, as iterative methods, ASH

and parallel Schwarz converge at the same rate, as stated in Theorem 2.
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Fig. 2. (a) A two-subdomain decomposition. (b) Convergence behaviour for the parallel
Schwarz, additive Schwarz and ASH methods.

Table 1. Error norms for Parallel Schwarz and ASH iterates.

Parallel Schwarz ASH

Error on Ω1 Error on Ω2 Error on Ω

Iters L2-Norm Ratio L2-Norm Ratio L2-Norm Ratio

1 60.4103 61.2159 69.0920
2 35.5724 0.5888 35.0937 0.5733 40.1592 0.5812
3 20.4046 0.5736 20.6840 0.5894 23.3519 0.5815
4 12.0281 0.5895 11.8656 0.5737 13.5796 0.5815
5 6.9001 0.5737 6.9947 0.5895 7.8969 0.5815
6 4.0676 0.5895 4.0126 0.5737 4.5923 0.5815
7 2.3335 0.5737 2.3654 0.5895 2.6706 0.5815
8 1.3756 0.5895 1.3570 0.5737 1.5530 0.5815
9 0.7891 0.5737 0.7999 0.5895 0.9031 0.5815
10 0.4652 0.5895 0.4589 0.5737 0.5252 0.5815
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5 Conclusions

We have shown that when the domain decomposition contains no cross points, the
ASH method and parallel Schwarz have identical iterates outside the overlap. When
both methods converge, they do so at the same asymptotic rate, provided the overlap
subproblem is well posed. Thus, ASH is simply Lions’ parallel method disguised as a
preconditioner. The same conclusions hold when optimized transmission conditions
are used; the proof is given in a separate article [7]. Such an insight can be used
to estimate convergence rates of the optimized ASH method in cases where known
results (e.g. [5]) do not apply. It would be interesting to see whether similar ideas
can be used to relate RASHO to the parallel Schwarz method. Finally, a crucial
assumption throughout this paper is that there must be no cross points. Since no such
assumption is required in the interpretation of RAS [6], it would be instructive to
study a problem with cross points to see whether similar results hold for arbitrary
domain decompositions.
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