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Summary. A non-overlapping domain decomposition algorithm combining bound-
ary element method with meshless local Petrov-Galerkin method is presented for
solving the boundary value problem with discontinuous coefficient in this paper. The
static relaxation parameter is employed to speed up the convergence rate. The con-
vergence range and the optimal value of static relaxation parameter are studied, but
the numerical results show that the optimal static relaxation parameter is different for
different problems. Therefore, a dynamic relaxation parameter is presented for the
algorithm. The numerical results show that the number of iteration with the dynamic
relaxation parameter is less than that with the static relaxation parameter.
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1 Introduction

As we know, the meshless methods and boundary element method (BEM) are widely
employed as two of the main numerical methods for the solution of a wide variety of
science and engineering problems. However, they exhibit different advantages when
applied to different classes of problems. The main feature of the meshless methods
is the absence of an explicit mesh, and the approximate solutions are constructed en-
tirely based on a cluster of scattered nodes. Therefore, the meshless methods are well
suited to problems with extremely large deformation, dynamic fracturing, or explo-
sion [1, 2]. On the other hand, the main advantage of BEM is that the dimensionality
of the problem is reduced by one, and the BEM is very efficient for the analysis of
homogenous linear problems in unbounded domains.

It is attractive to divide a computational domain into sub-domains and
to use the most appropriate method for each sub-domain. The idea of coupling the
meshless methods and BEM is by now well known as an efficient analysis tool,
which makes use of their advantages. A great number of articles on the topic, such
as combining element-free Galerkin method (EFGM) with BEM [ 10, 11, 12, 21],
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reproducing kernel particle method (RKPM) with BEM [16], the mesh-free finite
cloud method (MFCM) with BEM [17], meshless local Petrov-Galerkin (MLPG)
method with BEM [9], can be found. The above coupling methods deduce an en-
tire unified system for the whole domain, by combining the discretized equations
for the BEM and different meshless methods in sub-domains. However, the algo-
rithm for constructing a large entire system for the whole domain is complicated and
time-consuming for computation when compared with that for each single equation,
and may destroy the desirable features originally existing in the meshless methods
matrices, namely, symmetry and sparsity.

The domain decomposition methods (DDM) combining FEM-BEM or BEM-
BEM have been developed [3, 4, 5, 6, 7, 8, 13, 14, 15, 18]. The DDM is better than
the above coupling methods when the domains under consideration are governed
by different differential equations or constructed of different materials, especially
in the case of large domain with complicated boundary manifold. Therefore, a non-
overlapping DDM combining BEM with MLPG method is presented in order to
make use of their advantages and preserve the nature of the both methods in this
paper.

This paper is arranged as follows: Sect. 2 gives a non-overlapping domain de-
composition algorithm combining BEM and MLPG method for solving the boundary
value problem with discontinuous coefficient. Then, the dynamic relaxation param-
eter is presented for the algorithm in the next section. In Sect. 4, the convergence
range and the optimal value of the static relaxation parameter are studied and the
validity of the dynamic relaxation parameter is verified by numerical results. Finally,
the conclusions are given in Sect. 5.

2 A DDM Combining BEM with the MLPG Method

Consider the following boundary value problem with discontinuous coefficient⎧⎨⎩
∇ · (γ (x)∇u (x)) = 0, x ∈ Ω
u (x) = f (x) , x ∈ Γu
q (x) = γ (x) · ∂u (x)/∂n = g (x) , x ∈ Γq

(1)

where Ω ⊂ R2, Γ is its boundary. x = (x1, x2) denotes the point in R2. γ (x) is the
conductivity coefficient. f (x) , g (x) are the given boundary data. The problem ( 1)
often appears in engineering problems, e.g., heat conduction and electric conduction
models with mixed materials, Darcy flow in porous media, etc. Many methods, such
as FEM [19] and BEM [20], have been successfully used to solving the problem (1),
however, the domain decomposition is suitable for the problems with discontinuity
conductivity coefficients. In this paper, we assume that the conductivity coefficient
is as follows

γ (x) =
{

1, x ∈ ΩB ⊂ Ω
γM (x) , x ∈ ΩM = Ω \ΩB

(2)
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Then the domain of the original problem can be decomposed into BEM sub-domain
ΩB and MLPG sub-domainΩM , let Γ I = ∂ΩB∩∂ΩM be the BEM/MLPG interface
(Fig.1). Apparently, the continuity and equilibrium conditions should be satisfied at
the interface, that is

uB(x) = uM (x),
∂uB(x)
∂nB

+ γM (x)
∂uM (x)
∂nM

=0, x ∈ Γ I (3)

where uB(x) = u(x)|ΩB , uM (x) = u(x)|ΩM , nB and nM are the unit outward
normal vectors for the BEM and MLPG sub-domains, respectively.

Fig. 1. Domain decomposed into BEM and MLPG sub-domains.

On the one hand, we can obtain the following boundary integral equation for the
BEM sub-domainΩB

c(y)uB(y) +
∫

∂ΩB

uB(x)
∂u∗(x, y)
∂nB

dΓ =
∫

∂ΩB

u∗(x, y)
∂uB(x)
∂nB

dΓ, y ∈ ∂ΩB (4)

where u∗(x, y) = − 1
2π ln |x− y| is the fundamental solution of Laplace equation,

c(y) depends on the geometry shape at point y. The boundary integral equation ( 4)
can be rewritten as the following matrix form(

H11 H12

H21 H22

){
UBB
U IB

}
=

(
G11 G12

G21 G22

){
QBB
QIB

}
(5)



394 L. Maojun and Z. Jialin

where UBB and QBB are column vectors containing the non-interface nodal potentials
and fluxes values, respectively, U I

B and QIB are column vectors containing the inter-
face nodal potentials and fluxes values, respectively.H andG are the corresponding
coefficient matrices.

On the other hand, we have the following local weak form for the MLPG sub-
domainΩM by means of the MLPG method∫

ΩMi

(γM · ∇u · ∇v) dΩ +
∫
Γui

(
αuv − γM · ∂u

∂nM
· v

)
dΓ

=α
∫
Γui

fvdΓ +
∫
Γqi

gvdΓ +
∫
ΓIi

(
γM · ∂u

∂nM

)
vdΓ

(6)

whereΩMi ⊂ ΩM is a local sub-domain, v is a weight function,α is a penalty factor,
ΓIi = ∂ΩMi∩Γ I , Γui = ∂ΩMi∩Γu, Γqi = ∂ΩMi∩Γq. Then the assembled linear
equations are given by (

K11 K12

K21 K22

){
UMM
U IM

}
=

{
FMM
F IM

}
(7)

where U IM is the interface nodal potentials vectors, UM
M is the all nodal potentials

vectors except the interface nodal potentials, K and F are the corresponding coeffi-
cient matrix and right side vector, respectively. Note that F I

M is a vector containing∫
ΓIi

(
γM · ∂u

∂nM

)
vdΓ , then the conditions (3) can be rewritten as

U IB = U IM , F IM = PQIM = −PQIB, (8)

where P is a transition matrix, which depends on the weight function v and the
shape function in the moving least square approximation, Q I

M is a column vector
containing the interface nodal fluxes values.

Therefore, a parallel Dirichlet-Neumann BEM-MLPG algorithm is as follows:
Step 1: assign the initial potential vector U I

B,0 and flux vectorQI
M,0, and n:=0.

Step 2: solve(
H11 H12

H21 H22

){
UBB,n
U IB,n

}
=

(
G11 G12

G21 G22

){
QBB,n
QIB,n

}
for QIB,n (9)

(
K11 K12

K21 K22

){
UMM,n

U IM,n

}
=

{
FMM,n

PQIM,n

}
for U IM,n (10)

Step 3: apply
U IB,n+1 = βU IM,n + (1− β)U IB,n (11)

QIM,n+1 = −QIB,n (12)

Step 4: check if
∥∥U IB,n+1 − U IB,n

∥∥ +
∥∥QIM,n+1 −QIM,n

∥∥ ≤ εmax(||U IB,n+1||,
||QIM,n+1||), if yes then stop, otherwise set n:=n+1, and go to Step 2.
here β is a relaxation parameter to ensure and/or accelerate convergence, ε is the user
specified error allowance.
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3 A Dynamic Relaxation Parameter

If the relaxation parameter β is assigned as a constant for every iteration, an optimal
β̄ can be obtained by testing with different values. However, we find that the opti-
mal static value is different for the different problems in numerical test, therefore we
couldn’t find a suitable optimal value for all problems. Fortunately, a dynamic relax-
ation parameter has been obtained for the sequential FEM-BEM algorithm [ 18], that
is to say, the iterative procedure can be facilitated by allowing the relaxation param-
eter to change dynamically with each iteration. In this section, a dynamic relaxation
parameter will be presented for the parallel Dirichlet-Neumann BEM-MLPG itera-
tive algorithm.

By minimizing the square error functional

G (β) =
∥∥U IB,n+1 (β)− U IB,n (β)

∥∥2
+

∥∥QIM,n+1 (β)−QIM,n (β)
∥∥2

(13)

with respect to the relaxation parameter β, one gets an optimal dynamic value for the
next iteration, i.e.,

βn =
〈eB,n, eB,n − eM,n〉+ 〈eB,n−1, eB,n−1 − eM,n−1〉

‖eB,n − eM,n‖2 + ‖eB,n−1 − eM,n−1‖2
, n ≥ 3 (14)

eB,n = U IB,n − U IB,n−1, eM,n = U IM,n − U IM,n−1, n ≥ 2 (15)

where 〈a, b〉 is a inner product, and ‖a‖2 = 〈a, a〉.

4 Numerical Examples

To illustrate the convergence results of the iterative algorithm, a numerical example
is presented in this section. Moreover, the accelerated convergence of the dynamic
relaxation parameter will also be shown. In this section, we choose the error bound
as ε = 10−4.

Example (Potential flow problem [6, 8]) We consider the mixed boundary value
problem (1), and assume that ΩB = [0, 1] × [0, 1] and ΩM = [1, 2] × [0, 1], the
conductivity coefficient γM (x) = 2, the boundary conditions are selected such that
u (0, x2) = 0, u (2, x2) = 200 and zero flux elsewhere (Fig. 2a).

Using the proposed iterative algorithm in Sect. 2, the problem is solved by three
different discretization types denoted as Fig. 2 (b–d).

Figure 3 shows the convergence ranges and the optimal static values with the
static relaxation parameter for the different discretization types. Beyond the values
shown in Fig. 3, the iterative algorithm will not converge. From Fig. 3, we know
that convergence ranges and optimal static values are different for the different dis-
cretization types. Therefore it is impossible to select a suitable optimal static value
for all cases.

Table 1 shows the numbers of iterations with optimal static values and dynamic
values for the different discretization types. From Table 1, obviously, the number
of iterations with dynamic value is less than or equal to that with the static value.
Therefore, we can say that the dynamic values is the optimal relaxation parameter.
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Fig. 2. Potential flow problem and discretization types.

Fig. 3. Convergence ranges and optimal static values for the different discretization types.

Table 1. Number of iterations for the different discretization types.

Relaxation parameter Type (b) Type (c) Type (d)

Optimal static value β 8 14 16
Dynamic values βn 8 11 9
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5 Conclusions

Generally speaking, the static relaxation parameter is always employed to speed up
the convergence rate of domain decomposition methods. However the convergence
ranges and optimal values of the static relaxation parameter are different for different
problems. Therefore, the dynamic relaxation parameter is used in the proposed do-
main decomposition algorithm in this paper, the numerical results show that the dy-
namic relaxation parameter is the optimal relaxation parameter which is well suited
to all cases.
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