
A Sparse QS-Decomposition for Large Sparse Linear
System of Equations

Wujian Peng1 and Biswa N. Datta2

1 Department of Math, Zhaoqing University, Zhaoqing, China,
douglas peng@yahoo.com

2 Department of Math, Northern Illinois University, Dekalb, IL, USA,
dattab@math.niu.edu

Summary. A direct solver for large scale sparse linear system of equations is presented in
this paper. As a direct solver, this method is among the most efficient direct solvers available
so far with flop count as O(n logn) in one-dimensional situations and O(n3/2) in second
dimensional situation. This method has advantages over the existing fast solvers in which it
can be used to handle more general situations, both well-conditioned or ill-conditioned sys-
tems; more importantly, it is a very stable solver and a naturally parallel procedure! Numerical
experiments are presented to demonstrate the efficiency and stability of this algorithm.

1 Introduction

One of the core tasks in mathematical computations is to solve algebraic linear sys-
tem of equations, which often arise from solving physical and engineering problems
modeled in PDE and discretized by FEM or FDM. Frequently one may encounter
systems with up to hundreds of thousands of unknowns and coefficient matrix is
usually very sparse, i.e., most of the entries in the coefficient matrix are zeros.

Currently direct methods for solving large scale linear systems are variations of
Gaussian elimination method (GE), such as TDMA, the multifrontal methods [1, 4],
Pardiso [2] and superLU [5],etc. It is well-known that GE method is not stable due
to the accumulated rounding errors, even if partial pivoting is applied; the excessive
flops needed in GE (which is a part reason for the instability) is also an big issue.
Though parallel can be partly implemented in reordering of unknowns [3, 6], a for-
ward and a backward substituting procedure are always needed.

In this paper we are to discuss a complete parallel efficient algorithm for solv-
ing linear system of equations. This algorithm is based on the recognizing of certain
special sequence of vectors, which is then orthogonalized by a special algorithm
called Layered Group Orthogonalization (LGO). The new direct solver is based on
LGO and is applied to solve linear systems with banded matrices arising from some
one-dimensional problems. Numerical examples show some astonishing stability be-
havior of this new method. More applications of the idea presented here are to be
followed by later papers.

432 W. Peng and B.N. Datta

2 A Quasi-Orthogonal Vector Sequence

We start from recognizing a special sequence of vectors, which are closely related to
banded matrices.

Definition 1. A sequence of vectors v1, v2, · · · , vn is called quasi-orthogonal if there
exists an integer m such that after grouping the above sequence into groups of m
vectors

{v1, · · · vm}, {vm+1 · · · , v2m}, · · · , {vlm+1, · · · , vn}
there holds

vTi vj = 0, ∀vi ∈ Gi′ , vj ∈ Gj′ (|i′ − j′| > 1) (1)

where Gi is the ith group containing vectors {v(i−1)m+1 · · · , vim}. Note the last
group does not necessarily have m vectors. Furthermore, since any integer greater
than m can be used to group the vector sequence while (1) is satisfied, we call this
sequence as k-orthogonal sequence with k as the smallest integer m available.

Obviously a regular orthogonal sequence can be regarded as a quasi-orthogonal
sequence, but a k-orthogonal sequence (k > 0) is not orthogonal. We are to present
an efficient algorithm to orthogonalize a k-orthogonal sequence a moment later, but
first let’s give some examples of quasi-orthogonal sequences.

Example 1. Let A ∈ R be a bidiagonal matrix, A = (a1, a2, · · · an) be a partition
with ai(i = 1, · · ·n) as its column vectors, then a1, a2, · · ·an form a 1-orthogonal
sequence. If one partitions A into a sequence of row vectors, one also gets a 1-
orthogonal sequence.

Similarly one can see that the row/column vectors of a tridiagonal matrix form a 2-
orthogonal sequence. As a matter of fact, given any banded matrix A with at most
k+1 nonzero entries at each row/column, the associated row/column vectors always
form a k-orthogonal sequence.

Note here we define k-sequence from vectors with only a few nonzero entries.
Does there exist indeed vector sequence with all entries as nonzero numbers to form
a k-orthogonal sequence? The following remark provides a positive answer to this
question.

Remark 1. LetQ ∈ Rn×n be an orthogonal matrix, v1, v2, · · · , vn be a k-orthogonal
sequence with each vi ∈ Rn, then sequence Qv1, Qv2, · · · , Qvn also form a k-
orthogonal sequence.

Outline of the proof Note that we have

(Qvi)TQvj = vTi Q
TQvj = vTi vj = 0, for |i′ − j′| > 1,

where vi ∈ Gi′ , vj ∈ Gj′ , the conclusion thus comes directly from the above obser-
vation.

It is easy to see that any vector combinations inside each group will not change
the k-orthogonal property of the sequence. As a direct consequence, the following
statement is true and will be used in later section.

A Sparse QS-Decomposition for Large Sparse Linear System of Equations 433

Remark 2. LetG1, G2, · · ·Gl be a sequence of groups associated with a k-orthogonal
sequence. If we orthogonalize vectors in each group, the newly formed groups of
vector, still denoted by G1, G2, · · ·Gl, keep the k-orthogonal property.

3 Layered Group Orthogonalization

As we mentioned previously, the k-orthogonal sequence is not a regular orthogonal
sequence, thus a process is needed to orthogonalize this sequence. However classi-
cal Gram-Schmidt process or Hessenberg is not suitable for this purpose since the
sparsity of the vector (matrix) structure will be destroyed. Although Hessenberg QR
factorization can be used to orthogonalize the sequence, its parallel implementations
is not an easy task [7] since in essence QR factorization is a sequential algorithm

In this section we are to provide a new type of orthogonalization process espe-
cially designed for this type of quasi-orthogonal sequence, which is called Layered
Group Orthogonalization process (LGO). The detail comes as follows.

3.1 Algorithm (LGO)

Let v1, v2, · · · , vn be a k-orthogonal vector sequence and is grouped into
groupsG1, G2, · · ·Gl. Assuming each group has m(≥ k) vectors.

Step 1: Orthogonalize all odd groups (these can be done independently),
i.e., G1, G3, · · ·Gl are orthogonalized at this step (assuming l is odd).

Step 2: If there are no even groups left, stop. Otherwise update each even
group by making it orthogonal to its neighboring odd groups.

Ḡ2i = Ḡ2i − Ḡ2i+1Ḡ
T
2i+1Ḡ2i − Ḡ2i−1Ḡ

T
2i−1Ḡ2i

where Ḡj represents the matrix formed by vectors in vector groupG j .
Step 3: Take out all odd groups and renumber the groups left in the same

order:G2, G4, · · ·G2s −→ G1, G2, · · · , Gs
Step 4: Go back to Step 1.

To justify the above algorithm, we need first the following conclusions.

Proposition 1 The vector sequence formed by vectors in all odd groups after step 1
are orthogonal.

Proof By the definition of k-orthogonality, vectors from different odd groups are
orthogonal already. By Remark 2 and the fact that vectors in each odd group are
orthogonalized in step 1, vectors from the same group are orthogonal to each other.
This completes the proof.

Proposition 2 The vectors in every even group are orthogonal to vectors in any
odd groups after step 2. i.e., given any vector v i ∈ G2i′+1, vj ∈ G2j′ , there holds
vTi vj = 0.

434 W. Peng and B.N. Datta

The proof of this proposition is omitted .
Proposition 1 and 2 actually indicate this fact: “half” vectors in the original k-

orthogonal sequence are orthogonalized in the first run of the loop in the above al-
gorithm. To make the second run keeps similar orthogonalization function, we need
the conclusions that follows immediately.

Proposition 3 Vector sequence formed by vectors from even groups after second
step in the above algorithm still form a k-orthogonal sequence.

Proof It is omitted here.

3.2 Matrix representation of LGO

For the sake of simplicity, we assume k-orthogonal sequence v1, v2, · · · , vn is
grouped into l + 1 groups G0, G1, G2, · · · , Gl with each containing k vectors, we
denote the first step operation in the algorithm by matrix S (i)

1 and S(i)
2 for the second

step in each run of the loop (i = 1, 2, . . .). Then one can see that

S
(1)
1 =

⎛⎜⎜⎜⎜⎜⎝
R−1

1

Ik
R−1

3

Ik
. . .

⎞⎟⎟⎟⎟⎟⎠ and S(1)
2 =

⎛⎜⎜⎜⎜⎜⎝
Ik −ĜT1 G2

0 Ik 0
−ĜT3 G2 Ik −ĜT3G4

0 Ik 0
. . .

⎞⎟⎟⎟⎟⎟⎠
assuming l + 1 is odd. Thus one can see that the first step in each run of the loop
always corresponding to a block diagonal matrix with only a small portion of blocks
are non-identity blocks, while the second step matrix has a small portion of columns
having at most three non-zero blocks.

The whole process, denoted by matrix S−1, has the following form: S−1 =
S

(1)
1 S

(1)
2 · · ·S(r)

1 S
(r)
2 , where r = [log(n/k)]. Let Q be the resulted orthogonal ma-

trix by LGO process, then one has A = QS, where A is the matrix formed by the
k-orthogonal sequence as its column vectors. Note that bothQ and S are sparse ma-
trices with O(k2n log(n/k)) nonzero entries. Actually the following graphs show
their sparsity pattern.

4 LGO Solver and Numerical Experiments

An immediate application of the LGO factorization is of course to solve linear system
Ax = b with A as a banded matrix. Formerly one would have by multiplying both
sides the inverse of matrix S,

S−1Ax = S−1b.

Note that Q = S−1A is an orthogonal matrix, thus the solution x can be written as

x = (S−1A)TS−1b = QTS−1b.

A Sparse QS-Decomposition for Large Sparse Linear System of Equations 435

0 10 20 30 40

0

5

10

15

20

25

30

35

40

nz = 368
0 10 20 30 40

0

5

10

15

20

25

30

35

40

nz = 432

Fig. 1. Distribution of nonzeros of sparse matrix Q and S.

In actual calculations, the inverse of matrix S is not explicitly formed, and as we
noted previously, the operation S−1A and S−1b only cost O(k2n log(n/k)) flops.

Next we present results of some numerical experiments. We take the simplest
banded matrix–tridiagonal matrix. As we know currently the most frequently used
method is the so-called TDMA. Our comparison of LGO method and TDMA in
case A is diagonally dominant shows that these two methods reach almost the same
precision and the result are thus not listed here.

In case of A not diagonally dominant, we tried to use TDMA, UMFPACK and
LGO to solve a system with A slightly away from diagonally dominant as follows:

A = tridiag{−1.05, 2,−1}

and the condition number of this matrix A grows from hundreds when n is less than
100 to O(1013) when n is about 1,000.

In Fig. 2 one can see that both TDMA and UMFPACK work well in case of
system with 1,000 unknowns, however when the size of system is greater than 1,500,
the relative error becomes unacceptable. In order to test the stability of LGO, we

0 500 1000 1500 2000 2500
−20

−15

−10

−5

0

5

10

size of system

lo
ga

rit
hm

 o
f r

el
at

iv
e

er
r

TDMA
UMFPACK

0 2 4 6 8 10

x 10
4

−16

−14

−12

−10

−8

−6

−4

−2

size of system

lo
ga

rit
hm

 o
f r

el
at

iv
e

er
r

lgo

Fig. 2. Comparison of relative error by using TDMA, UMFPACK and LGO.

construct an extremely ill-conditioned linear system with A as a tridiagonal matrix
with diagonal entries as 2, upper diagonal entries as -1 and lower diagonal entries run
from 1 to n− 1 with n as the size of the matrix. The following table is the calculated
condition numbers of A when n varies.

436 W. Peng and B.N. Datta

n 10 15 20 25
cond (A) 9.3066e+004 5.0624e+008 4.7161e+013 3.9742e+017

Both TDMA and UMFPACK fail when n = 30. But by using LGO solver we
successfully obtained pretty good solutions for n up to 100, 000 with the exact solu-
tion as f(x) = x(1 − x)ex+6 (see Fig. 3).

0 2000 4000 6000 8000 10000
−10

−8

−6

−4

−2

0

2

4

6
x 10

−5

error: x − xx

0 2 4 6 8 10

x 10
4

−10

−8

−6

−4

−2

0

2

4

6
x 10

−6

error: x − xx

Fig. 3. Error between the exact solution and calculated solution using LGO.

5 A Nested Direct Domain Decomposition Idea

In this section we are going to briefly talk about another important application of the
aforementioned direct solver, which is actually a generalization of LGO.

Based on our discovery of the quasi-orthogonal sequence introduced in previous
section, we find that in FEM or FDM, each mesh node corresponding to a row in
resulted coefficient matrix can be naturally grouped into different groups by its geo-
metric locations; and if two groups are separated by at least a few grid lines (Fig. 4),
then row vectors corresponding to these two groups can be orthogonalized indepen-
dently. A simple implementation is described in the following.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
The Natural Domain Decomposition Idea

3

1

2

4

5

6

7

8

9

Fig. 4. Partitioning of direct domain decomposition.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 3146

Fig. 5. Zero pattern of stiffness matrix.

A generalized LGO process is used to handle a second dimensional problem on
[0, 1]2. Here we assume the domain is discretized with a rectangular mesh. In each
layer of the LGO process we use small rectangular areas as the subdomains and the

A Sparse QS-Decomposition for Large Sparse Linear System of Equations 437

subdomains in the upper layer are formed by grouping the neighboring rectangular
subdomains in previous layer which share a common vertex. By using lexicography
order of nodes the resulted coefficient matrix A is a banded matrix with zeros inside
the band, as shown in Fig. 6.

The generalized LGO factors of A in this case have however some different zero
patterns, as we can see from the following figures (Figs. 6, 7) that the counts for
nonzeros are of orderO(n1.5), which can also be verified by estimating each step of
the generalized LGO process.

Fig. 6. Zero pattern of factor Q.
Fig. 7. Zero pattern of factor S.

Comparison between UMFPACK and LGO have been made on both well-
conditioned and ill-conditioned systems from some simple two dimensional prob-
lems. Numerical experiments show that for standard Poisson problem defined on
rectangular domain [0, 1]2, both methods work well (Fig. 8). However, for an artifi-
cially constructed discrete operator which leads to the following Toeplitz-like matrix
A = (aij)n×n (very ill-conditioned) where

aij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4, (i = j)
−6, (i = j − 1 and (i mod l) �= 1)
−2, (i = j + 1 and (i mod l) �= 0)
−1, (|i− j| = l)
0, (otherwise)

and l is the positive square root of system size n, UMFPACK fails when the size
of system n is greater than a few thousands while LGO solver still shows satisfying
relative error when n is more than 20, 000 (Fig. 9). More meaningful tests and appli-
cations of LGO are currently under the way and the results will be presented in later
papers.

0 2000 4000 6000 8000 10000 12000 14000 16000
−16.5

−16

−15.5

−15

−14.5

−14

−13.5

−13

−12.5

−12

−11.5

size of system

lo
ga

rit
hm

 o
f r

el
at

iv
e

er
ro

r

Comparison between LGO and UMFPACK on Poisson problem

LGO
UMFPACK

Fig. 8. Comparison on Poisson problem.

0 0.5 1 1.5 2 2.5

x 10
4

−15

−10

−5

0

5

10

15

20

25

size of system

lo
ga

rit
hm

 o
f r

el
at

iv
e

er
ro

r

Comparison between LGO and UMFPACK on an ill−conditioned problem

LGO
UMFPACK

Fig. 9. Comparison on ill-conditioned problem.

438 W. Peng and B.N. Datta

Acknowledgement We would like to thank Professor Qun Lin for his great support
while the first author was visiting LSEC. We also benefit from our discussion with
Dr. Qiya Hu , Dr. Linbo Zhang and Dr. Zhongzhi Bai in LSEC as well as Dr. Jun Zou
and Dr. Shuhua Zhang. We are encouraged to finish this part of research and gave a
report at the conference.

References

1. I.S. Duff. A survey of sparse matrix research. In Proc. IEEE, 65(4): 500–535, 1977.
2. K. Gartner, W. Fichtner, and A. Stricker. Pardiso: A high-performance serial and parallel

sparse linear solver in semiconductor device simulation. J. Future Generation Comp. Syst.,
18:69–78, 2001.

3. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10:
345–363, 1973.

4. A.M. Erisman, I.S. Duff and J.K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, New York, NY, 1986.

5. J. Gilbert, J. Demmel and X. Li. An asynchronous parallel supernodal algorithm for sparse
Gaussian elimination. SIAM J. Matrix Anal. Appl., 20(4):915–952, 1999.

6. X.S. Li and J.W. Demmel. Making sparse Gaussian elimination scalable by static pivoting.
In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, Orlando, FL, 1998.

7. J. Touriño, R. Doallo and E.L. Zapata. Sparse Householder qr factorization on a mesh. In
Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing,
Braga, 1998.

