
On Domain Decomposition Algorithms for Contact
Problems with Tresca Friction

Julien Riton1, Taoufik Sassi1, and Radek Kučera2
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1 Introduction

Development of numerical methods for the solution of contact problems is a chal-
lenging task whose difficulty lies in the non-linear conditions for non-penetration and
friction. Recently, many authors proposed to use various numerical algorithms com-
bined with multigrid or domain decomposition techniques; see, e.g., the primal-dual
active set algorithm [8], the non-smooth multiscale method [10], or the augmented
Lagrangian based algorithm [3]. Another alternative consists in the formulation of
suitable iterations solving the elasticity equations for each sub-body separately with
certain boundary conditions [5]. In [1], the authors proposed a Dirichlet-Neumann
algorithm which takes into account the natural interface for frictionless contact prob-
lems. Another improvement has led to a Neumann–Neumann algorithm in which
they added two Neumann sub-problems in order to ensure the continuity of normal
stresses [2]. Later, various numerical implementations of this approach was given in
[7, 9]. In this contribution, we extend the algorithm to two-body contact problems
with Tresca friction. The advantage consists in decoupling the non-penetration and
friction conditions between the bodies so that they are treated separately by smaller
subproblems that may be solved in parallel. With respect to existing (global) algo-
rithms, our method is suitable in situations when material or geometrical qualities of
the bodies are considerably different. By numerical experiments, we illustrate that
the algorithm is mesh independent for a suitable choice of parameters.

2 Contact Problems with Tresca Friction

Let us consider two elastic bodies occupying bounded domainsΩ α ∈ R2, α = 1, 2.
Each boundary Γ α := ∂Ωα is assumed piecewise continuous and composed of
three disjoint, non-empty parts Γ α

u , Γα	 , and Γ αc . Each body Ωα is fixed on Γ αu
and subject to surface tractions φα ∈ L2(Γα	 ). The body forces are denoted by
fα ∈ L2(Ωα). In the initial configuration, the bodies possess the common contact
interface Γc := Γc

1 = Γc
2, where the unilateral contact with Tresca friction is
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considered. The problem consists in finding the displacement field u = (u 1,u2),
uα := u|Ωα , and the stress tensor σ = (σ(u1), σ(u2)) such that for α = 1, 2:

divσ(uα) + fα = 0 in Ωα,
σ(uα)nα = φα on Γα	 ,

uα = 0 on Γαu

⎫⎬⎭ (1)

and σ is related to the strain tensor e(uα) =
(
∇uα + (∇uα)T

)
/2 by Hooke’s law

for linear isotropic materials:

σij(uα) = Eαijkhekh(u
α),

where E = (Eαijkh)1≤i,j,k,h≤2 ∈ (L∞(Ωα))16 is the fourth-order tensor satisfying
the symmetry and ellipticity conditions.

We will use the usual notation for the normal and tangential components of the
displacement and stress vectors on Γc:

uαN = uα.nα, uαT = uα.tα, σαN = (σ(uα)nα).nα, σT α = (σ(uα)tα).nα,

where nα denotes the unit outer normal vector to Γ α
c and tα is the unit tangential

vector satisfying tα.nα = 0 and t1 = −t2. On Γc, the unilateral contact law is given
by

σ1
N = σ2

N := σN , σ1
T = σ2

T := σT , (2)

[uN ] ≤ 0, σN ≤ 0, σN [uN ] = 0, (3)

where [uN ] := u1
N + u2

N is the jump in the normal direction across the interface Γc.
The Tresca law of friction is given by

|σT | ≤ g,
|σT | < g ⇒ [uT ] = 0,
|σT | = g ⇒ ∃κ ≥ 0 : [uT ] = −κσT on Γc,

⎫⎬⎭ (4)

where g ∈ L2(Γc), g ≥ 0, is the given slip bound on Γc and [uT ] := u1
T + u2

T .

Remark 1. In the Coulomb law of friction, g replaces F|σN |, i.e., the product of
the coefficient of friction F and à-priori unknown absolute value the normal contact
stress σN .

The problem of finding the couple u = (u1,u2) satisfying (1), (2), (3), and (4)
will be called (P). Its existence and uniqueness is established in [6].

3 Algorithms and the Implementation

We start with the algebraic formulation of the non-decomposed problem. Let p α
denote the dimension of the finite element space Vα

0,h defined on the triangulation
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T αh of Ωα, α = 1, 2, and p := p1 + p2. Further, let q be the number of contact

nodes of Ω1, i.e., the nodes of T 1
h lying on Γ c \ Γ

1

u. As we consider matching
grids, the contact nodes of Ω1 and Ω2 coincide. By A ∈ Rp×p and b ∈ Rp, we
denote the stiffness matrix and the load vector, respectively, of the whole structure.
Let us note that A, b can be naturally decomposed into blocks corresponding to
Ω1 and Ω2 so that A = diag(A1,A2), b = (b�

1 , b
�
2 )�, where Aα ∈ Rpα×pα are

symmetric, positive definite and bα ∈ Rpα , α = 1, 2. We introduce the matrices
Nα,Tα ∈ Rq×pα , α = 1, 2, projecting contact displacements to the directions of
nα, tα, respectively, i.e., each row of Nα,Tα contains the two components of the
corresponding normal nα and tangential tα vectors. For sake of simplicity we denote
by Bα = (N�

α ,T
�
α )� that are matrices with orthonormal rows. Finally, the vector

g ∈ Rq is determined by the nodal values of g.
The finite element approximation of (P) leads to the following algebraic prob-

lem:

minimize
1
2

u�Au− u�b +
q∑
i=1

gi|T1u1 + T2u2|i

subject to N1u1 + N2u2 ≤ 0,
(5)

where u = (u�
1 , u

�
2 )�, uα ∈ Rpα , α = 1, 2 and |v| = (|v1|, |v2|, ..., |vq|)� for

v = (v1, ..., vq)�.
The problem (5) can be solved by ALGORITHM 1 and ALGORITHM 2 which are

discrete versions of our domain decomposition methods .

Algorithm 1 Let λ(0) = (λ(0)
ν

�
,λ

(0)
τ

�
)� ∈ R2q and θ > 0 be given. For k ≥

1 compute u(k)
α ,w(k)

α ∈ Rpα , α = 1, 2, and λ(k) = (λ(k)
ν

�
,λ

(k)
τ

�
)� ∈ R2q as

follows:

(Step 1) {Normal bilateral contact with Tresca friction for Ω1.}

u(k)
1 := argmin

1
2

u�
1 A1u1 − u�

1 b1 +
q∑
i=1

gi|T1u1 − λ(k−1)
τ |i

subject to N1u1 = λ(k−1)
ν ;

(Step 2) {Normal unilateral and tangential bilateral contact for Ω 2.}

u(k)
2 := argmin

1
2

u�
2 A2u2 − u�

2 b2

subject to λ(k−1)
ν + N2u2 ≤ 0, T2u2 = −λ(k−1)

τ ;

(Step 3) {Residual deformation of Ω 1.}

A1w(k)
1 =

1
2

B�
1 (B1(b1 − A1u(k)

1 )− B2(b2 − A2u(k)
2 ));

(Step 4) {Residual deformation of Ω 2.}
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A2w(k)
2 =

1
2

B�
2 (B1(b1 − A1u(k)

1 )− B2(b2 − A2u(k)
2 ));

(Step 5) {Relaxation of the contact displacements.}

λ(k) = λ(k−1) + θ(B1w(k)
1 + B2w(k)

2 ).

In Step 3 and Step 4, we compute deformations of the bodies induced by the non-
equilibria of contact stresses on Γc. These deformations vanish in the solution due to
the transfer condition (2). Below, we will show that the dual formulation simplifies
considerably the implementation of the algorithm.

The minimization in Step 1 is equivalent to the saddle-point problem:

Find (u1, s1) ∈ Rp1 × Λ(g) such that

L1(u1, s1) = min
v1∈Rp1

max
r1∈Λ(g)

L1(v1, r1) = max
r1∈Λ(g)

min
v1∈Rp1

L1(v1, r1),

where L1 : Rp1 × Λ(g) �→ R is the Lagrangian defined by

L1(v1, r1) :=
1
2

v�
1 A1v1 − v�

1 b1 + r�1 (B1v1 − λ(k−1))

with Λ(g) := {r1 = (r�1ν , r
�
1τ )

� ∈ R2q : |r1τ | ≤ g}. Eliminating u1 from the
max-min formulation we arrive at the quadratic programming problem:

minimize
1
2

s�1 C1s1 − s�1 h1 subject to s1 ∈ Λ(g), (6)

where C1 := B1A−1
1 B�

1 is symmetric, positive definite and h1 := B1A−1
1 b1 −

λ(k−1). After computing s1 from (6) one can obtain u(k)
1 in Step 1 by u(k)

1 =
A−1

1 (b1 − B�
1 s1).

The minimization problem in Step 2 can be handled analogously. It is equivalent
to the saddle-point problem:

Find (u2, s2) ∈ Rp2 × Λ+ such that

L2(u2, s2) = min
v2∈Rp2

max
r2∈Λ+

L2(v2, r2) = max
r2∈Λ+

min
v2∈Rp2

L2(v2, r2),

where L2 : Rp2 × Λ+ �→ R is the Lagrangian defined by

L2(v2, r2) :=
1
2

v�
2 A2v2 − v�

2 b2 + r�2 (λ(k−1) + B2v2)

and Λ+ := {r2 = (r�2ν , r
�
2τ )

� ∈ R2q : r2ν ≥ 0}. Analogously, this max–min
problem leads to the quadratic programming problem:

minimize
1
2

s�2 C2s2 − s�2 h2 subject to s2 ∈ Λ+, (7)
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where C2 := B2A−1
2 B�

2 is again symmetric, positive definite and h2 := B2A−1
2 b2−

c+λ(k−1). After solving (7) one can obtain u(k)
2 in Step 2 as u(k)

2 = A−1
2 (b2−B�

2 s2).
As (6) and (7) are the minimization problems with strictly quadratic functions

constrained by simple inequality bounds, it is appropriate to solve them by the con-
jugate gradient method combined with the projected gradient technique [ 4]. Since
both problems are independent, one can solve them in parallel.

Step 3 and Step 4 may be simplified. Let s (k)
1 , s(k)2 be the solutions to (6), (7),

respectively, in the k-th step. Since Aαu(k)
α − bα + B�

α s(k)α = 0, we get s(k)
α =

Bα(bα−Aαu(k)
α ). Using these results, we arrive at: Aαw(k)

α = 1
2B�

α (s(k)1 − s(k)2 ), so

that the computations of u(k)
α , α = 1, 2, can be omitted.

In the second algorithm we obtain the same structure as before, only Step 1 and
Step 2 are different.

Algorithm 2 (different steps)

(Step 1) {Linear elasticity for Ω1.}

u(k)
1 := argmin

1
2

u�
1 A1u1 − u�

1 b1

subject to B1u1 = λ(k−1);

(Step 2) {Unilateral contact with Tresca friction for Ω2.}

u(k)
2 := argmin

1
2

u�
2 A2u2 − u�

2 b2 +
q∑
i=1

gi|λ(k−1)
τ + T2u2|i

subject to λ(k−1)
ν + N2u2 ≤ 0;

Let us denote the relative precision of the k-th iterative step of ALGORITHM 1,2
by

ε
(k)
λ := ‖λ(k) − λ(k−1)‖/‖λ(k)‖,

where ‖ · ‖ stands for the approximation of the L2(Γc)-norm. We terminate if
ε
(k)
λ ≤ tol for a prescribed tolerance tol > 0. In order to increase the efficiency

of the algorithm, we initialize the inner iterative solvers in Step 1 and Step 2 by the
respective results from the previous outer iterate, i.e., by s (k−1)

1 and s(k−1)
2 , and we

terminate them by an adaptive (inner) terminating tolerance tol (k)
in > 0. The idea is

to choose tol (k)
in in such a way that it respects the precision ε(k−1)

λ achieved in the

outer loop: tol (k)
in := rtol × ε(k−1)

λ , where 0 < rtol < 1, ε(0)λ := 1.

4 Numerical Experiments

We consider two plane elastic bodies Ω1 = (0, 3) × (1, 2) and Ω2 = (0, 3) ×
(0, 1) made of an isotropic, homogeneous material characterized by Young modulus
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21.19 × 1010 and Poisson ratio 0.277 (steel); see Fig.1.(a). The decompositions of
Γ 1 and Γ 2 are as follows:

Γ 1
u = {0} × (1, 2), Γ 1

c = (0, 3)× {1}, Γ 1
	 = Γ 1\Γ 1

u ∪ Γ 1
c ,

Γ 2
u = {0} × (0, 1), Γ 2

c = (0, 3)× {1}, Γ 2
	 = Γ 2\Γ 2

u ∪ Γ 2
c .

The volume forces vanish for both bodies. The non-vanishing surface tractions φ 1 =
(φ1

1, φ
1
2) act on Γ 1

	 so that

φ1
1(x, 2) = 0, φ1

2(x, 2) = φ1
2,L + φ1

2,Rx, x ∈ (0, 3),
φ1

1(3, y) = φ1
1,B(2− y) + φ1

1,U (y − 1),
φ1

2(3, y) = φ1
2,B(2− y) + φ1

2,U (y − 1), y ∈ (1, 2),

where φ1
2,L = −6e7, φ1

2,R = −1e7, φ1
1,B = 2e7, φ1

1,U = 2e7, φ1
2,B = 4e7, and

φ1
2,U = 2e7. The slip bound is g = 1.7e7. Fig.1.(b–d) show results of the computa-

tions.

(a) Triangulation of bodies
and applied tractions

0 1 2 3

−3

−2

−1

0

1

2

3

x 10
7

Γ
c
1

Γ
c
2

(c) Normal contact stresses

0 1 2 3

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

Ω1

Ω2

(b) Contact zone

0 1 2 3
−2

−1

0

1

2
x 10

7

g

−g

(d) Tangential contact stresses

Fig. 1. Geometry and results.

In tables below we compare the performance of ALGORITHMS 1 and 2 for vari-
ous values of θ and degrees of freedom p and q. We set tol = 10−4, rtol = 0.1 and
we report the number of outer and inner iterations (out/inn). Since inn is proportional
to computing time, it characterizes the total complexity of the algorithm. Here the
symbol “-” means that the terminating tolerance is not achieved after the 100th itera-
tion. The numerical experiments show higher efficiency of Algorithm 1 in which the
non-linear conditions of non-penetration and friction are decoupled into Step 1 and
Step 2.



Algorithms for Contact Problems with Tresca Friction 373

Table 1. Algorithm 1, out/inn for various θ.

p/q θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4

12672/384 69/835 36/537 26/473 –
19680/480 69/845 37/574 25/445 –
23760/528 70/805 37/585 25/469 –
28224/576 69/845 37/591 25/479 –
38304/672 69/890 36/598 26/490 –
49920/768 70/881 36/610 25/497 –

Table 2. Algorithm 2, out/inn for various θ.

p/q θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4

12672/384 86/959 47/571 91/921 –
19680/480 86/961 48/587 98/983 –
23760/528 86/961 47/587 99/1021 –
28224/576 87/991 47/600 – –
38304/672 86/979 48/603 – –
49920/768 87/1000 47/588 91/952 –

5 Conclusions and Comments

We have presented two different ways of decomposing unilateral contact problems
with Tresca friction. According to the previous analysis, one can say that the variant
with the decoupled non-penetration and friction conditions is more efficient. The
theoretical proof of the convergence will be presented elsewhere. It is based on the
Banach fixed point theorem applied to an appropriate mapping that is Lipschitzian
and contractive in a suitable norm equivalent to the norm of the trace space H 1/2(Γc)
(see [7] for the frictionless case).

The algorithm can be easily extend to the solution of problems with Coulomb
friction as well as for 3D problems. In 3D, the inner minimization will be performed
by the method of [11] that treats circular constraints arising from the friction law.
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of the Ministry of Education of the Czech Republic and of the project GAČR 101/08/0574 of
the Grant Agency of the Czech Republic.
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