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Summary. We introduce a family of parallel Newton-Krylov-Schwarz methods for
solving complementarity problems. The methods are based on a smoothed grid se-
quencing method, a semismooth inexact Newton method, and a two-grid restricted
overlapping Schwarz preconditioner. We show numerically that such an approach is
highly scalable in the sense that the number of Newton iterations and the number
of linear iterations are both nearly independent of the grid size and the number of
processors. In addition, the method is not sensitive to the sharp discontinuity that is
often associated with obstacle problems. We present numerical results for some large
scale calculations obtained on machines with hundreds of processors.

1 Introduction

Complementarity problems have many important applications [ 3, 4, 6], and there are
growing interests in developing efficient parallel algorithms for solving these semis-
mooth problems on large scale supercomputers. One popular approach is the class of
semismooth methods which solves the complementarity problem by first reformulat-
ing it as a semismooth system of equations and then applying a generalized Newton
method to solve this system. There are extensive theoretical and numerical results
associated with this approach, see, e.g., [5, 7, 8]. However, all existing approaches
seem to have scalability problems in the sense that when the degree of freedoms in
the problem increases the number of nonlinear or linear iterations increases drasti-
cally.

In this paper, we introduce a class of general purpose two-grid Newton-Krylov-
Schwarz (NKS) algorithms for complementarity problems associated with partial
differential equations. The methods are based on an inexact semismooth Newton
method, a smoothed grid sequencing method and a two-level cascade restricted
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overlapping Schwarz preconditioning technique. It turns out, with an appropriate
grid sequencing, the convergence rate of the semismooth Newton method can be
made nearly independent of the number of unknowns of the system using either the
Fischer-Burmeister function or the minimum function. Using the two-level restricted
Schwarz preconditioner with sufficient overlap, the number of linear iterations also
becomes nearly independent of the number of unknowns of the system. More impor-
tantly, both the linear and nonlinear iterations are nearly independent of the number
of processors in our numerical experiments on machines with hundreds of proces-
sors.

2 Semismooth Function Approaches for Complementarity
Problems

Let £2 € R? be a bounded open domain on which a linear or nonlinear differential
operator L(u) is defined. Many problems can be described as finding a function u(z)
defined in certain space such that

Lu(x) > 0, x €2
u(z) > &, x € 1)
(u(z) = ®)Lu(x) =0, z€ N

with some boundary conditions assumed for u(x),x € 0f2. Here & is given and
often called an obstacle. In this paper, we consider the following complementarity
problem:

find up, € R, @)
such that w;, > ¢, F(uh) >0, (uh - d))TF(uh) =0,

where F(up) = (Fy(up), -, Fn(up))? @ R* — R™ denotes a continuously dif-
ferentiable function from the discretized version of L(u), and ¢ € R™ denotes the
obstacle from the discretization of &.

2.1 Semismooth Newton Methods

Let a; = (up — ¢); and b; = F;(uy,), the reformulations of the complementarity
problem based on the Fischer-Burmeister function [5] and the minimum function [7]
are as follows:

Frp(a,b) :=a+b—+aZ+b2 =0, (3)
Farin(a,b) ;== min{a, b} = 0. (4)

In fact, the Fischer-Burmeister function is differentiable everywhere except at the
point (a,b) = (0,0), while the minimum function is piecewise smooth with its non-
differentiable points forming the line {(a,b)” € R? : a = b}.
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If we apply a Newton-type method to (3) and (4), respectively, then it leads to
the class of inexact semismooth Newton methods, in which we need to solve a right-
preconditioned Jacobian system

|1F (uf) + JiMy "t (Misi) || < masc{n, | F (uf) ], 1},

where .J, is a generalized Jacobian of F(u}) to be introduced below, n,. € [0,1) is
a relative tolerance, 1, € [0, 1) is an absolute tolerance, and M, * is an overlapping
Schwarz preconditioner [9, 10].

For both the Fischer-Burmeister function and the minimum function, the gener-
alized Jacobian matrix .J;, is of the form

Ji = Dj + DYF (uf) 5)
with diagonal matrices (depending on the iteration index k)
DY =diag(da,,...,ds,), D =diag(dy,,...,dy,). (6)

The values of D% and D in (6) corresponding to the Fischer-Burmeister function

take the form
4 = 1—a1;/\/a%+b12., if a? + b7 #£ 0,
@i 1, if a? + b7 = 0,

and

d, ,_{ —b;/\/a? +b?, ifa?+0b? #0,
=L

% if a2 + b2 = 0.

Similarly, when using the minimum function, the values of D * and DY in (6) assume
the form

d. = 17 a; < bi7
“E0, b,

and

Oa a; < bi;
dbi T { ]., a; 2 bl

When using a Newton type method to solve complementarity problems, one of
the major problems is the deterioration of the convergence rate when the mesh is
refined. We here propose a smoothed grid sequencing technique: First, compute the
solution w3, of the nonlinear system Fy (uz) = 0 on a coarse grid. Second, interpo-
late the coarse solution to obtain @9 = I %, which is then smoothed by replacing
its value at each grid point with the following weighed average of its neighboring
values:

L 1 L
6 8 16
1\1l/ 1
§ 71 38
TN
1 1 1
6 s 16
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The smoothed vector is then used as the initial guess for the fine grid Newton iter-
ation. In Fig. 1, we show the surface plots of the nonlinear system F, (I u%;) on a
fine grid without smoothing (left figure), and F, (u$;) with one sweep of smoothing
(right figure) for an obstacle problem. More details of this problem will be discussed
in the numerical experiments section.

Residual surface without smoothing Residual surface with smoothing

Fig. 1. The effect of smoothing of the interpolated coarse grid solution on the fine grid.

2.2 Schwarz Preconditioner

Let .J be the Jacobian matrix on the fine grid and R¢ and RY, the restriction operator
from {2 to its overlapping and non-overlapping subdomains, respectively. Then the
one-level restricted additive Schwarz (RAS) preconditioner [ 2] is

N,

Mpis = 2 (R)TJTIRY. ©

=1
with J; = R? J (R?)T and N is the number of subdomains, which is the same as
the number of processors.

Let J. be the Jacobian matrix on the coarse grid and {f a restriction operator
from the fine grid to the coarse grid. Then the two-level restricted Schwarz precon-
ditioner is

M =M;'+Mpig— MpigJM !
with Mt = ([T J 1 1H . We refer to [9, 10] for further analysis and examples of
Schwarz preconditioning techniques.

3 Numerical Experiments

We report some results of our numerical experiments. Our solver is implemented
using PETSc ([1]). We consider an obstacle problem: find (x) such that



Domain Decomposition Methods for a Complementarity Problem 451

—Au(z) +C >0, x €2,
u(z) > —d(x, 012), x € (2, 8
(u(z) +d(z,00))(—Au(z) + C) =0, z € 2, ®)
u(z) =0, x € 012,

where the d(z, 12)-operator measures the distance from a point = to the domain
boundary 012, and the parameter C' = 5.

For the discretization we use the standard second-order five-point finite differ-
ence method on a uniform grid. The initial guess «? for the global Newton iteration
is the obstacle from the discretization of —d(z, 9£2) in (8). We stop the fine grid
Newton iteration if

17 (ui)ll < max{107°|| F(up)]l, 1071}

The fine grid Jacobian system is solved with GMRES (30), and the iteration is
stopped if the tolerance

17 (uk) + Jrsell < max{107*[|F (uj;)|, 107}

is satisfied. The subdomain problems are solved with LU factorization. Through-
out this section,“np” stands for the number of processors which is the same as the
number of subdomains, “INB” the number of inexact Newton iterations, “RAS” the
number of RAS preconditioned GMRES iterations, and “Time” of the total computer
time in seconds.

3.1 One-Level Results

We first study the one-level method with overlap § = 3. As shown in Table 1, on
a fixed grid, the number of Newton iterations is independent of the number of pro-
cessors, but the number of GMRES iterations increases as the number of processors
increases for both the Fischer-Burmeister function and the minimum function. The
major problem with the one-level method shows up, if we look at the scalability for
a fixed number of processors. For each row in the table, every time we refine the grid
by a factor of 2, the number of Newton iterations doubles. This problem prohibits
the use of the method for high resolution applications.

3.2 Two-Level Results

In this subsection, we present the numerical results using the two-level approach in
which a coarse grid is used in the nonlinear solver for generating a better initial guess
and also in the linear solver for generating part of the Schwarz preconditioner. In the
test, the initial guess for the global Newton iteration on the coarse grid is the obstacle
¢ in (2), and the tolerance conditions on the fine grid are the same as in the one-level
method. We stop the coarse grid Newton iteration if

1 Fr (upp) || < max {10~ (| Fpr (ufy) ||, 1071}
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Table 1. Results for the one-level method with overlap § = 3.

Mesh

256 x 256

512 x 512

1,024 x 1,024

2,048 x 2,048

np

INB RAS Time

INB RAS Time

INB RAS Time

INB RAS Time

T

he Fischer-Burmeister function

64

82 114 33

162 14.7 325

320 19.1 384.1

639 24.4 4781.1

128

82 136 21

162 175 17.4

320 22.2 180.4

639 30.8 2236.3

256

82 144 15

162 18.9 10.2

320 24.3 959

639 34.1 1110.0

512

82 172 11

162 226 7.5

320 32.3 62.3

639 38.5 568.9

The minimum function

64

80 11.7 29

159 15.3 29.5

319 19.9 361.9

637 26.4 4673.0

128

80 140 19

159 18.3 16.1

319 23.7 173.5

637 33.7 2201.8

256

80 149 14

159 19.7 9.7

319 26.1 94.4

637 36.5 1104.8

512

80 17.7 13

159 238 7.3

319 345 62.0

637 41.1 567.5

In the test, the Jacobian system on the coarse grid is solved with a one-level RAS
preconditioned GMRES (30) with the following stopping condition

P8 (uly) + T My ras(Marasse) | < max{10~*|Fp (uf)|, 1071},

where M, ', , 4 is defined similar to (7) on the coarse grid. The subdomain problems
are solved with LU factorization.

Using § = 6 and 6. = 3, we solve the test problem on several different fine
grids with the two-level method and the results are summarized in Table 2, for both
the Fischer-Burmeister function and the minimum function. The main concern is the
size of the coarse grid H, which is taken as /2, h/4 and h/8, where h is the size of
the fine grid. In terms of the total number of Newton iterations, H = h/2 is certainly
the best, but H = h/8 offers the best results in terms of the total compute time.
Note that some cases, marked as “x”, for the fine grid 256 x 256 are not available
because the corresponding coarse grids are too coarse and the coarse Newton may not
converge. The compute time includes the coarse grid calculation of the initial guess,
the smoothing of the coarse solution, and the solving of the fine grid problem. Note
that the minimum function approach is always faster than the Fischer-Burmeister
function approach in terms of all measures.

We should mention that the use of smoothed grid sequencing plays an important
role in the two-level methods. In Fig. 1, the surface plots of the residual function
before and after the smoothing are shown and they are quite different. The cost of
the smoothing step is very small and fewer number of Newton iterations is needed as
a result of the smoothing.

4 Some Final Remarks

We have developed a family of parallel, highly scalable, two-grid algorithms for
solving general complementarity problems. In addition to the fine grid, on which
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Table 2. Results with different fine and coarse grids. The overlapping sizes of the coarse grid
and the fine grid are . = 3 and § = 6, respectively. The preconditioner is the two-level RAS.
hand H are the fine and coarse grid sizes, respectively.

Mesh| 256 x 256 512 x 512 1,024 x 1,024 | 2,048 x 2,048
np |INB RAS Time|INB RAS Time|INB RAS Time |INB RAS Time
The Fischer-Burmeister function
H=h/2
64 | 6 108 24| 5 158 115| 4 218 76.0/ 4 26.3 8485
128 | 6 13.0 22| 5 188 85| 4 26.3 49.0| 4 358 536.1
256 | 6 138 18| 5 208 6.0| 4 300 336| 4 37.8291.9
512 | 6 193 28| 5 244 59| 4 346 329| 4 43.0 206.5
H=h/4
64 * 7 153 6.2 | 7 19.0 339| 6 25.8 201.7
128 * 7 184 48| 7 226 219| 6 32.7 120.8
256 * 7 203 36| 7 254 254| 6 38.7 71.6
512 * 7 239 43| 7 339 121| 6 43.7 56.6
H="h/8
64 * 9 157 59| 9 19.7 31.0| 8 26.4 169.9
128 * 9 191 46| 9 237 188| 8 339 99.2
256 * 9 210 35| 9 26,6 10.7| 9 36.6 54.3
512 * * 9 343 10.8| 8 453 344
The minimum function
H=h/2
64 | 2 140 13| 3 143 83| 3 17.7 60.4| 2 315 777.7
128 | 2 165 12| 3 16.7 6.0 | 3 217 40.6| 2 39.0 446.3
256 | 2 175 10| 3 183 43| 3 26.3 26.3| 2 49.5 260.6
512 | 2 25.0 15| 3 200 39| 3 29.7 222| 2 57.0 1785
H=nh/4
64 * 4 155 39| 4 188 21.1| 5 19.6 160.3
128 * 4 188 29| 4 248 146| 5 232 93.1
256 * 4 203 23| 4 280 92| 5 244 508
512 * 4 245 28| 4 330 7.7| 5 30.6 39.7
H="h/8
64 * 7 156 46| 6 213 21.7| 6 25.7 126.9
128 * 7 186 35| 6 248 13.1| 6 33.3 74.2
256 * 7 207 27| 6 267 73| 6 37.0 37.0
512 * * 6 348 7.4 | 6 425 254

the PDE is discretized and the complementarity problem is solved, a coarse grid
is introduced to accelerate the nonlinear convergence, and to precondition the lin-
ear Jacobian solver in a semismooth Newton iteration. With the help of a smoothed
grid sequencing, a semismooth Newton method and a two-level restricted Schwarz
preconditioner, we have showed numerically that the family of two-grid Newton-
Krylov-Schwarz algorithms has a fast and robust convergence and that the rate of
convergence is nearly independent of the number of unknowns of the problem and
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the number of processors. Surprisingly good results were obtained for solving some
rather difficult obstacle problems with millions of unknowns and on parallel ma-
chines with up to 512 processors.
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