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1 Introduction

We consider two-level Newton-Krylov-Schwarz algorithms for blood flow in arter-
ies, which is a computationally difficult and practically important application area
[6, 8]. In particular, the similar densities of blood and artery wall make the coupling
between fluid and structure strong in both directions, so that partitioned or iterative
procedures have difficulties due to the added-mass effect [ 4]. Instead of a partitioned
procedure, we adopt a monolithic computational approach, coupling fluid to struc-
ture in one large system that is solved all at once. This tight coupling allows for
robustness to parameters and makes our method immune to the added-mass effect.
The resulting system is difficult to solve, but we show here that it can be solved ef-
ficiently with effective preconditioning strategies specifically designed for parallel
computing.

2 Mathematical Model and Discretization

We solve the fully coupled and nonlinear equations for fluid-structure interaction
with monolithic coupling of the three components, the fluid, the elastic wall structure,
and the moving mesh.

Our visco-elastic model for the artery wall is

ρs
∂2

∂t2
xs = ∇ · σs + β

∂

∂t
(Δxs)− γxs (1)

where xs is the structural displacement, σs = −psI + (2/3)Es(∇xs + ∇xTs ) is
the Cauchy stress tensor that involves the unknown pressure p s, ρs is the structure
density, and β is a visco-elastic parameter. The γ term is included so that we can
reproduce a standard fluid-structure test problem with one-dimensional structure as
in [1]. To specify the grid displacements xf , we simply use the Laplace equation
Δxf = 0 on the interior of the domain, following the practice in [ 10].
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We model the fluid as a viscous incompressible Newtonian fluid, using the
Navier–Stokes equations in the ALE frame

∂uf
∂t

∣∣∣∣
Y

+ [(uf − ωg) · ∇]uf +
1
ρf
∇pf = νfΔuf , (2)

∇ · uf = 0, (3)

Here uf is the fluid velocity vector and pf is the pressure. The given data include the
fluid density ρf and the kinematic viscosity νf = μf/ρf . The ALE mesh velocity is
ωg = ∂xf/∂t and the Y indicates that the time derivative is to be taken in the ALE
frame.

Boundary conditions for the fluid equations typically consist of a Dirichlet con-
dition where uf takes a given profile at the inlet Γi, and a zero traction condition
σf · nf = μf (∇uf · nf ) − pfnf = 0 at the outlet, where nf is the unit outward
normal. Here we have used σf = −pfI + μf (∇uf ).

The physical system, as well as our model and discretization, has strong coupling
between the three fields. At the fluid-structure boundary we require that structure
velocity match fluid velocity, uf = ∂xs/∂t, which is a generalization of a no-slip,
no penetration condition. We also enforce that the moving mesh must follow the
solid displacement, so that the structure can maintain a Lagrangian description. This
condition takes the form xf = xs. Again, this reduces to a homogeneous Dirichlet
condition in the case of a rigid wall. Finally, we enforce the continuity of traction
forces at the boundary. This can be written σs ·ns = −σf ·nf , where ns,nf are the
unit outward normal vectors for the solid and fluid domains, respectively, and σ s and
σf are the Cauchy stress tensors. The condition can be thought of as a Neumann-type
condition on the structure model. It is important to emphasize that these coupling
conditions are enforced implicitly as part of the monolithic system – they are never
enforced as boundary conditions with given data from subproblems, as in the iterative
coupling approach.

We discretize the coupled system with Q2 − Q1 finite elements for both fluid
and structure. We discretize in time with the second order implicit trapezoid rule
yn+1 = yn + (Δt/2)(Fn+1 + Fn). For the sake of brevity, we skip the derivation
of the weak form (which is standard) and present the fully discrete system. At each
time step we solve a nonlinear system of the form

(M̃ − (Δt/2)K̃)yn+1 = (M̃ + (Δt/2)K̃)yn (4)

where

yn =

⎛⎜⎜⎜⎜⎜⎜⎝
uf
pf
xs
ẋs
ps
xf

⎞⎟⎟⎟⎟⎟⎟⎠

n

, M̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
Mf

I
ρsMs

⎞⎟⎟⎟⎟⎟⎟⎠ , (5)

and
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K̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
N(uf )− νfKf −QTf

Qf
I

Au Ap Ks + γMs βKs −QTs
Qs

Km

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)

In the above, Mf ,Ms are finite-element mass matrices for the fluid and structure,
N(uf ) represents the nonlinear term in (2), Qf , Qs are discrete divergence opera-
tors, and Kf ,Ks,Km are all finite-element stiffness matrices. Au and Ap are dis-
cretizations of the traction-matching condition.

3 Two-Level Newton and Schwarz Methods

At each timestep we have to solve the nonlinear system (4). We solve this nonlin-
ear system with a two-level Newton-Krylov-Schwarz algorithm – it is this algorithm
that is the heart of this paper and the key to achieving parallel scalability and perfor-
mance.

We first obtain an initial guess for the fine nonlinear problem (4) by solving an
analogous nonlinear problem on the coarse grid and interpolating to the fine grid.
Then we solve (4) with a standard inexact Newton method using that initial guess.
At each iteration of Newton’s method, we need to solve a linear Jacobian system, for
which we use restarted flexible GMRES. The Newton method and the linear solver
are standard, so we go on to describe the two-level hybrid preconditioner in detail.

Our hybrid preconditioner has two pieces – a one-level Schwarz domain decom-
position component, and a coarse solve component. We describe the domain decom-
position part first.

The domain decomposition portion, or fine-grid portion, of the two-level precon-
ditioner is implemented as in [2]. We first partition the finite element mesh on Ω
into several meshes on subdomains Ω	, each one corresponding to a processor of
the parallel machine. Then we extend each subdomain Ω 	 to overlap its neighbors
by a user-specified amount δ, and denote the overlapping domain by Ω ′

	. On each
subdomain Ω ′

	 we construct a subdomain operator B	, which is a restriction of the
Jacobian matrix from the Newton solver. This portion of the preconditioner can be
written

M−1
1 =

N∑
j=1

(R0
j )
TB−1

j Rδj (7)

where the B−1
j are subdomain solves and the Rj are restriction and interpolation

operators for the subdomains. Here R0
	 is a restriction operator that does not in-

clude overlap while Rδ	 includes the overlap, which describes the restricted additive
Schwarz variant [3]. The choice of subdomain solves and restriction and interpo-
lation operators leads to different kinds of Schwarz preconditioners with different
properties [9]. In our algorithm the B̃−1

	 solves are done with LU factorization, which
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is expensive, but since the subdomain solve is local to a single processor the precon-
ditioner is scalable.

In our implementation, we combine the coarse-level and fine-level precondition-
ers multiplicatively, while continuing to use additive Schwarz within the fine level.
You can write down the application of this hybrid preconditionerM −1

h to a vector x
in two steps

z = IhHB
−1
0 IHh x, (8)

M−1
h x = z +M−1

1 (x−G′
hz) = z +

N∑
j=1

(R0
j )
TB−1

j Rδj(x−G′
hz), (9)

where IHh is a restriction from the fine grid to the coarse grid, I hH = (IHh )T is
the corresponding interpolation operator from coarse grid to fine grid, and B −1

0 is
a coarse-grid solve. In this hybrid preconditioner, the additive one-level component
(9) means we can do the local subdomain solves in parallel, while we do the coarse
and fine levels sequentially.

The coarse solve B−1
0 in (8) is normally parallel restarted GMRES, precondi-

tioned with a one-level additive Schwarz method, using the same number of sub-
domains (and therefore processors) as the fine grid. The matrix that is being used
in GMRES here is a Jacobian matrix, constructed independently on the coarse grid.
That is, we solve (8) using the one-level algorithm described above. The only differ-
ence is that we can solve the coarse problem with a much larger error tolerance than
the fine problem, saving computational cost while still being an effective precondi-
tioner.

Using the same basic algorithm for the one-level method on the coarse as on the
fine grid has two advantages. First, it is simpler to implement and allows us to reuse
some data structures. And second, since we are using the full parallel collective to
solve the coarse problem, it allows us to apply the preconditioner multiplicatively,
since the coarse solve is done before the fine solve needs any data from it and vice
versa. One potential disadvantage is the large number of subdomains of the coarse
space, which could lead to the same ill-conditioning problem that drove us to use a
two-level method in the first place. In practice, the coarse problem is easy enough
to solve and the overlap (which is less costly to increase on the coarse grid) can be
made sufficiently large to overcome this difficulty, though for very large simulations
we may want to consider additional levels.

The fine and coarse grids in our implementation do not have any necessary con-
nection to each other – they can be generated completely independently by mesh-
generating software, and the interpolation and restriction between them is calculated
when the program runs. In particular, the fine grid is not a refinement of the coarse
grid. The fine grid is partitioned for the domain decomposition and parallel process-
ing by Parmetis [7], and the coarse grid inherits that partition – the elements of the
coarse grid are assigned to processors that contain nearby fine-grid elements.



Two-Level Methods for Blood Flow Simulation 145

4 Numerical Results

In this section we explore the implications of using a two-level Newton-Krylov-
Schwarz method and the interplay of various parameters in that method, compar-
ing to the one-level implementation as we go. We do simulations on a straight tube
model, where we can verify results found in the literature and more carefully control
the mesh size and number of unknowns, and also consider a more realistic branching
artery model derived from clinical data. See [2] for a detailed verification of the same
method with a less efficient preconditioner.

In the numerical results in this section, unless otherwise specified, we use an
incompressible structure, the fluid density is 1,000 kg/m3, the damping parameter
β = 0.01, and the kinematic viscosity of the fluid is νf = 0.0035 kg/m s.

For the solver parameters, we consider the Newton solver on the fine level to
have converged if the (absolute) residual is less than 10−6. For fGMRES on the fine
level, we have a relative tolerance that changes at each iteration, set by the Eisenstat–
Walker method [5]. We restart flexible GMRES every 100 iterations.

We first test the method on a straight tube problem taken from [1]. We have a
two-dimensional tube 6 cm by 1 cm, with walls at top and bottom of thickness 0.1
cm. A traction condition is applied at the left boundary to induce a pressure pulse,
which then travels to the right, deforming the structure as it goes. In this example
the Young’s modulus Es = 7.5 · 104 kg/m s2, the structure is incompressible and
has a density of 1,100 kg/m3, and the inlet pressure pulse takes the form σf · nf =
(−P0/2) [1− cos ((πt)/(.0025s))] where P0 = 2.0 ·105 kg/m s2. The timestep size
is Δt = 0.0001 s.
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Fig. 1. Weak scaling for a straight tube test problem. The vertical axis shows average walltime
in seconds per timestep of the simulation. The number of unknowns is proportional to the
number of processors – 1,024 processors is 7.1 · 106 unknowns.
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The primary motivation for the two-level preconditioner is to improve scalability
for the most physically realistic cases, and we demonstrate that scalability in Fig. 1,
which shows weak scaling for the straight tube example in the two-grid case, and
where the scalability looks very good out to 1,024 processors. The linear iterations
are also kept nearly constant for the two-level case in sharp contrast to the one-level
preconditioner (results not shown).

Table 1. Effect of the coarse grid size on the solver behavior for the straight tube case. Coarse
size is expressed as a fraction of the number of fine-grid unknowns, and coarse frac represents
the proportion of compute time spent on the coarse grid.

Unknowns np Coarse size Levels fGMRES Coarse frac Walltime

4.51 · 105 64 0.0 One 74.6 0.00 46.21
4.51 · 105 64 0.03 Two 53.1 0.04 46.33
4.51 · 105 64 0.12 Two 43.0 0.13 46.84

7.97 · 105 128 0.0 One 123.2 0.00 41.08
7.97 · 105 128 0.02 Two 86.9 0.06 42.87
7.97 · 105 128 0.07 Two 68.7 0.11 43.49

1.78 · 106 256 0.0 One 313.0 0.00 66.07
1.78 · 106 256 0.01 Two 205.5 0.06 67.74
1.78 · 106 256 0.03 Two 209.5 0.12 71.16

3.16 · 106 512 0.0 One 882.7 0.00 78.27
3.16 · 106 512 0.004 Two 1.52 · 103 0.15 143.82
3.16 · 106 512 0.02 Two 325.6 0.15 66.38
3.16 · 106 512 0.04 Two 485.8 0.24 83.74

7.09 · 106 1,024 0.0 One 5.55 · 103 0.00 426.07
7.09 · 106 1,024 0.02 Two 522.3 0.15 131.13
7.09 · 106 1,024 0.03 Two 4.17 · 103 0.38 548.94

Perhaps the most important implementation detail to consider in designing a two-
level method is to choose the size of the coarse grid in order to balance the improve-
ment in conditioning that comes from using a relatively fine coarse grid with the cost
of solving the problem on the coarse grid. In Table 1, we present some comparisons
of different coarse grid sizes.

In addition to the straight tube problem, we also use a pulmonary artery model
taken from clinical data. Here we use a Young’s modulus ofE s = 3.0 ·104 kg/m s2,
and the structure is again incompressible and has a density of 1,000 kg/m 3. We
start the simulation from rest, with an impulsive Dirichlet inlet velocity condition of
0.05 m/s. In this more physically realistic and computationally challenging example,
the difference in linear iteration counts between one- and two-level methods is even
more marked. In Table 2, the two-level method results in a very sharp reduction in
linear iterations and a good reduction in compute time for these problems. The two-
level method can also be shown to be more robust to a variety of physical parameters.
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Table 2. Solver characteristics for increasing number of subdomains, with fixed problem size
(1.63 million unknowns) and fixed overlap parameter (δ = 0 for two-level, δ = 3 for one-
level).

fGMRES Iterations Walltime
Subdomains one-level two-level one-level two-level

96 442 237 270 184
112 514 245 277 182
128 487 286 216 163
160 697 282 201 105
192 899 485 168 109
224 1,040 349 152 91.1
256 1,020 382 127 79.9

Table 3. Overlap parameter comparisons for one-level and two-level methods on a branching
grid.

Unknowns np Levels δ Newton fGMRES Walltime

1.63 · 106 128 One 1 3.0 2.35 · 103 406.32
1.63 · 106 128 One 2 3.0 820.6 270.19
1.63 · 106 128 One 3 3.0 487.4 214.43
1.63 · 106 128 One 4 3.0 356.6 225.61

1.63 · 106 128 Two 0 3.0 241.2 137.86
1.63 · 106 128 Two 1 3.0 261.4 186.48
1.63 · 106 128 Two 2 3.0 225.2 210.11
1.63 · 106 128 Two 3 3.0 201.4 193.15
1.63 · 106 128 Two 4 3.0 180.2 210.68

2.40 · 106 256 One 2 3.0 3.16 · 103 340.23
2.40 · 106 256 One 3 3.0 1.57 · 103 240.06
2.40 · 106 256 One 4 3.0 1.02 · 103 207.86

2.40 · 106 256 Two 0 3.0 423.2 114.98
2.40 · 106 256 Two 1 3.0 413.4 135.23
2.40 · 106 256 Two 2 3.0 338.2 148.22
2.40 · 106 256 Two 3 3.0 435.6 179.23
2.40 · 106 256 Two 4 3.0 433.2 194.31

The overlap parameter δ in the Schwarz domain decomposition method is one
way to adjust the strength of the preconditioner – a higher δ means more information
transfer between subdomains, and therefore a faster convergence, but results in larger
local problems. Another way to exchange information between subdomains is with
a coarse grid, and in Table 3 it is clear that in the two-level method, the need to use
overlap is greatly reduced.
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5 Conclusion

In this paper we have developed and analyzed two-level Newton-Krylov-Schwarz
methods for fluid-structure interaction in the simulation of blood flow. We have
demonstrated effective, scalable parallel preconditioners for the fully coupled mono-
lithic problem that allow complicated geometries with realistic parameter values.
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