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1 Iterative Methods

In this paper we discuss iterative methods to solve the linear operator equation

Au = f, (1)

posed on a finite dimensional Hilbert space V equipped with an inner product (·, ·).
Here A : V �→ V is a symmetric positive definite (SPD) operator, f ∈ V is given,
and we are looking for u ∈ V such that (1) holds.

The X-Z identity for the multiplicative subspace correction method for solving
(1) is introduced and proved in [7]. Alternative proofs can be found in [1, 4]. In this
paper we derive the X-Z identity from the auxiliary space method [ 3, 6].

A basic linear iterative method for solving (1) can be written in the following
form: starting from an initial guess u0, for k = 0, 1, 2, · · ·

uk+1 = uk +B(f −Auk). (2)

Here the non-singular operator B ≈ A−1 will be called the iterators. Let ek =
u− uk. The error equation of the basic iterative method (2) is

ek+1 = (I −BA)ek = (I −BA)ke0.

Thus the iterative method (2) converges if and only if the spectral radius of the error
operator I −BA is less than one, i.e., ρ(I −BA) < 1.

Given an iteratorB, we define the mappingΦBv = v+B(f−Av) and introduce
its symmetrization ΦB = ΦBt ◦ΦB . By definition, we have the formula for the error
operator I −BA = (I −BtA)(I −BA), and thus

B = Bt(B−t +B−1 −A)B. (3)
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Since B is symmetric, I −BA is symmetric with respect to the A-inner product
(u, v)A := (Au, v). Indeed, let (·)∗ be the adjoint in the A-inner product (·, ·)A. It is
easy to show

I −BA = (I −BA)∗(I −BA). (4)

Consequently, I −BA is positive semi-definite and thus λmax(BA) ≤ 1. We get

‖I −BA‖A = max{|1− λmin(BA)|, |1− λmax(BA)|} = 1− λmin(BA). (5)

From (5), we see that I −BA is a contraction if and only if B is SPD which is also
equivalent to B−t +B−1 −A being SPD in view of (3).

The convergence of the scheme ΦB and its symmetrization ΦB is connected by
the following inequality:

ρ(I −BA)2 ≤ ‖I −BA‖2A = ‖I −BA‖A = ρ(I −BA), (6)

and the equality holds if B = B t. Hence we shall focus on the analysis of the
symmetric scheme in the rest of this paper.

The iterator B, when it is SPD, can be used as a preconditioner in the Precondi-
tioned Conjugate Gradient (PCG) method, which admits the following estimate:

‖u− uk‖A
‖u− u0‖A

≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)k

(k ≥ 1),
(
κ(BA) =

λmax(BA)
λmin(BA)

)
.

A good preconditioner should have the properties that the action of B is easy to
compute and that the condition number κ(BA) is significantly smaller than κ(A).
We shall also discuss construction of multilevel preconditioners in this paper.

2 Auxiliary Space Method

In this section, we present a variation of the fictitious space method [3] and the
auxiliary space method [6].

Let Ṽ and V be two Hilbert spaces and let Π : Ṽ → V be a surjective map.
Denoted by Π t : V → Ṽ the adjoint of Π with respect to the default inner products

(Πtu, ṽ) := (u,Πṽ) for all u ∈ V , ṽ ∈ Ṽ .

Here, to save notation, we use (·, ·) for inner products in both V and Ṽ. Since Π is
surjective, its transpose Π t is injective.

Theorem 1. Let Ṽ and V be two Hilbert spaces and let Π : Ṽ → V be a surjective
map. Let B̃ : Ṽ → Ṽ be a symmetric and positive definite operator. Then B :=
ΠB̃Πt : V → V is also symmetric and positive definite. Furthermore

(B−1v, v) = inf
Πṽ=v

(B̃−1ṽ, ṽ). (7)
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Proof. We adapt the proof given by [7] (Lemma 2.4).
It is obvious that B is symmetric and positive semi-definite. Since B̃ is SPD and

Πt is injective, (Bv, v) = (B̃Πtv,Πtv) = 0 implies Πtv = 0 and consequently
v = 0. ThereforeB is positive definite.

Let ṽ∗ = B̃ΠtB−1v. Then Πṽ∗ = v by the definition of B. For any w̃ ∈ Ṽ

(B̃−1ṽ∗, w̃) = (ΠtB−1v, w̃) = (B−1v,Πw̃).

In particular (B̃−1ṽ∗, ṽ∗) = (B−1v,Πṽ∗) = (B−1v, v). For any ṽ ∈ Ṽ , denote by
v = Πṽ. We write ṽ = ṽ∗ + w̃ with Πw̃ = 0. Then

inf
Πṽ=v

(B̃−1ṽ, ṽ) = inf
Πw̃=0

(B̃−1(ṽ∗ + w̃), ṽ∗ + w̃)

= (B−1v, v) + inf
Πw̃=0

(
2(B̃−1ṽ∗, w̃) + (B̃−1w̃, w̃)

)
= (B−1v, v) + inf

Πw̃=0
(B̃−1w̃, w̃)

= (B−1v, v).

&'

The symmetric positive definite operator B may be used as a preconditioner for
solvingAu = f using PCG. To estimate the condition number κ(BA), we only need
to compare B−1 and A.

Lemma 1. For two SPD operators A and B, if c0(Av, v) ≤ (B−1v, v) ≤ c1(Av, v)
for all v ∈ V , then κ(BA) ≤ c1/c0.

Proof. Note that BA is symmetric with respect to A. Therefore

λ−1
min(BA) = λmax((BA)−1) = sup

u∈V\{0}

((BA)−1u, u)A
(u, u)A

= sup
u∈V\{0}

(B−1u, u)
(Au, u)

.

Therefore (B−1v, v) ≤ c1(Av, v) implies λmin(BA) ≥ c−1
1 . Similarly (B−1v, v) ≥

c0(Av, v) implies λmax(BA) ≤ c−1
0 . The estimate of κ(BA) then follows. &'

By Lemma 1 and Theorem 1, we have the following result.

Corollary 1. Let B̃ : Ṽ → Ṽ be SPD and B = ΠB̃Πt. If

c0(Av, v) ≤ inf
Πṽ=v

(B̃−1ṽ, ṽ) ≤ c1(Av, v) for all v ∈ V , (8)

then κ(BA) ≤ c1/c0.

Remark 1. In literature, e.g. the fictitious space lemma of [3], the condition (8) is
usually decomposed as the following two conditions.

(i) For any v ∈ V , there exists a ṽ ∈ Ṽ , such that Πṽ = v and ‖ṽ‖2
B̃−1 ≤ c1‖v‖2A.

(ii) For any ṽ ∈ Ṽ , ‖Πṽ‖2A ≤ c−1
0 ‖ṽ‖2

B̃−1 .
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3 Auxiliary Spaces of Product Type

Let Vi ⊆ V , i = 0, . . . , J, be subspaces of V . If V =
∑J
i=0 Vi, then {Vi}Ji=0 is

called a space decomposition of V . Then for any u ∈ V , there exists a decomposition
u =

∑J
i=0 ui. Since

∑J
i=0 Vi is not necessarily a direct sum, decompositions of u

are in general not unique.
We introduce the inclusion operator Ii : Vi → V , the projection operator Qi :

V → Vi in the (·, ·) inner product, the projection operator P i : V → Vi in the
(·, ·)A inner product, and Ai = A|Vi . It can be easily verified that QiA = AiPi and
Qi = Iti .

Given a space decomposition V =
∑J

i=0 Vi, we construct an auxiliary space of
product type Ṽ = V0×V1× ...×VJ , with the inner product (ũ, ṽ) :=

∑J
i=0(ui, vi).

We define Π : Ṽ → V as Πũ =
∑J
i=0 ui. In operator form Π = (I0, I1, · · · , IJ ).

Since V =
∑J
i=0 Vi, the operatorΠ is surjective.

Let Ri : Vi → Vi be nonsingular operators, often known as smoothers, approx-
imating A−1

i . Define a diagonal matrix of operators R̃ = diag(R0, R1, · · · , RJ) :
Ṽ → Ṽ which is non-singular. An additive preconditioner is defined as

Ba = ΠR̃Πt =
J∑
i=0

IiRiI
t
i =

J∑
i=0

IiRiQi. (9)

Applying Theorem 1, we obtain the following identity for preconditionerB a.

Theorem 2. If Ri is SPD on Vi for i = 0, . . . , J , then Ba defined by (9) is SPD on
V . Furthermore

(B−1
a v, v) = infPJ

i=0 vi=v

J∑
i=0

(R−1
i vi, vi). (10)

To define a multiplicative preconditioner, we introduce the operator Ã = ΠtAΠ .
By direct computation, the entry ãij = QiAIj = AiPiIj . In particular ãii =
Ai. The symmetric operator Ã may be singular with nontrivial kernel ker(Π),
but the diagonal of Ã is always non-singular. Write Ã = D̃ + L̃ + Ũ where
D̃ = diag(A0, A1, · · · , Aj), L̃ and Ũ are lower and upper triangular matrix of
operators, and L̃t = Ũ . Note that the operator R̃−1 + L̃ is invertible. We define
B̃m = (R̃−1 + L̃)−1 and its symmetrization as

B̃m = B̃tm + B̃m − B̃tmÃB̃m = B̃tm(B̃−t
m + B̃−1

m − Ã)B̃m. (11)

The symmetrizied multiplicative preconditioner is defined as

Bm := ΠB̃mΠ
t. (12)

We define the diagonal matrix of operators R̃ = diag(R0, R1, · · · , RJ), where,
for each Ri, i = 0, · · · , J , its symmetrization is
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Ri = Rti(R
−t
i +R−1

i −Ai)Ri.

Substituting B̃−1
m = R̃−1 + L̃, and Ã = D̃ + L̃+ Ũ into (11), we have

B̃m = (R̃−t + L̃t)−1(R̃−t + R̃−1 − D̃)(R̃−1 + L̃)−1

= (R̃−t + L̃t)−1R̃−tR̃R̃−1(R̃−1 + L̃)−1. (13)

It is obvious that B̃m is symmetric. To be positive definite, from (13), it suffices

to assume R̃, i.e. each Ri, is symmetric and positive definite which is equivalent to
that operator I −RiAi is a contraction and so is I −RiAi.
(A) ‖I −RiAi‖Ai < 1 for each i = 0, · · · , J .

Theorem 3. Suppose (A) holds. Then Bm defined by (12) is SPD, and

(B
−1

m v, v) = ‖v‖2A + infPJ
i=0 vi=v

J∑
i=0

‖Rti(AiPi
J∑
j=i

vj −R−1
i vi)‖2R−1

i

. (14)

In particular, for Ri = A−1
i , we have

(B
−1

m v, v) = ‖v‖2A + infP
J
i=0 vi=v

J∑
i=0

‖Pi
J∑

j=i+1

vj‖2A. (15)

Proof. Let

M = R̃−t + R̃−1 − D̃ = R̃−tR̃R̃−1, U = D̃ + Ũ − R̃−1, L = U t.

then R̃−1 + L̃ = M + L and Ã = M + L + U . We then compute

B̃
−1

m = (R̃−1 + L̃)(R̃−t + R̃−1 − D̃)−1(R̃−t + L̃t)

= (M + L )M−1(M + U ),

= Ã+ L M−1U

= Ã+
[
R̃t(D̃ + Ũ − R̃−1)

]t
R̃

−1[
R̃t(D̃ + Ũ − R̃−1)

]
.

For any ṽ ∈ V , denoted by v = Πṽ, we have

(Ãṽ, ṽ) = (ΠtAΠṽ, ṽ) = (AΠṽ,Πṽ) = ‖v‖2A.

Using component-wise formula of R̃t(D̃ + Ũ − R̃−1)ṽ, e.g. ((D̃ + Ũ)ṽ)i =∑J
j=i ãijvj =

∑J
j=iAiPivj , we get

(M−1U ṽ,U ṽ) =
J∑
i=0

‖Rti(AiPi
J∑
j=i

vj −R−1
i vi)‖2R−1

i

.

The identity (14) then follows. &'
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If we further introduce the operator T i = RiAiPi : V → Vi, then T ∗
i = RtiAiPi,

T i := Ti + T ∗
i − T ∗

i Ti = RiAiPi, and (R
−1

i wi, wi) = (AiT
−1

i wi, wi) =
(T

−1

i wi, wi)A. Here T
−1

i := (T i|Vi)
−1 : Vi → Vi is well defined due to the as-

sumption (A). We then recovery the original formulation in [ 7]

(B
−1

m v, v) = ‖v‖2A + infPJ
i=0 vi=v

J∑
i=0

(T
−1

i T ∗
i wi, T

∗
i wi)A,

with wi =
∑J

j=i vj − T
−1
i vi. With these notation, we can also use (13) to recovery

the formula in [1]

(B
−1

m v, v) = infP
J
i=0 vi=v

J∑
i=0

(T
−1

i (vi + T ∗
i wi), vi + T ∗

i wi)A.

4 Method of Subspace Correction

In this section, we view the method of subspace correction [5] as an auxiliary space
method and provide identities for the convergence analysis.

Let V =
∑J

i=0 Vi be a space decomposition of V . For a given residual r ∈ V ,
we let ri = Qir be the restriction of the residual to the subspace V i and solve the
residual equation in the subspaces

Aiei = ri approximately by êi = Riri.

Subspace corrections êi are assembled together to give a correction in the space V .
There are two basic ways to assemble subspace corrections.

Parallel Subspace Correction (PSC)

This method is to do the correction on each subspace in parallel. In operator form, it
reads

uk+1 = uk +Ba(f −Auk), (16)

where

Ba =
J∑
i=0

IiRiI
t
i =

J∑
i=0

IiRiQi. (17)

Thus the PSC are also called additive methods. Note that the formula (17) and (9)
are identical and thus identity (10) is useful to estimate κ(BaA).

Successive Subspace Correction (SSC)

This method involves successive corrections. In operator form, it reads

v0 = uk, vi+1 = vi +RiQi(f −Avi), i = 0, . . . , N, uk+1 = vJ+1. (18)
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For each subspace problem, we have the operator form v i+1 = vi+Ri(f−Avi),
but it is not easy to write out the iterator for the space V . We define Bm such that the
error operator

I −BmA = (I −RJQJA)(I −RJ−1QJ−1A)...(I −R0Q0A).

Therefore the SSC are also called multiplicative methods. We now derive a formula-
tion of Bm from the auxiliary space method.

In the sequel, we consider the SSC applied to the space decomposition V =∑J
i=0 Vi with smoothers Ri, i = 0, · · · , J . Recall that Ṽ = V0 × V1 × ...× VJ and

Ã = ΠtAΠ . Let f̃ = Πtf . Following [2], we view SSC for solving Au = f as a
Gauss-Seidel type method for solving Ãũ = f̃ .

Lemma 2. Let Ã = D̃ + L̃ + Ũ and B̃ = (R̃−1 + L̃)−1. Then the SSC for Au = f
with the smoothers Ri is equivalent to the Gauss–Seidel type method for solving
Ãũ = f̃ :

ũk+1 = ũk + B̃(f̃ − Ãũk). (19)

Proof. By multiplying (19) by R̃−1 + L̃ and rearranging the terms, we have

R̃−1ũk+1 = R̃−1ũk + f̃ − L̃ũk+1 − (D̃ + Ũ)ũk.

Multiplying by R̃, we obtain

ũk+1 = ũk + R̃(f̃ − L̃ũk+1 − (D̃ + Ũ)ũk),

and its component-wise formula, for i = 0, · · · , J

uk+1
i = uki +Ri(fi −

i−1∑
j=0

ãiju
k+1
j −

J∑
j=i

ãiju
k
j )

= uki +RiQi(f −A
i−1∑
j=0

uk+1
j −A

J∑
j=i

ukj ).

Let

vi−1 =
i−1∑
j=0

uk+1
j +

J∑
j=i

ukj .

Noting that vi − vi−1 = uk+1
i − uki , we then get, for i = 1, · · · , J + 1

vi = vi−1 +RiQi(f −Avi−1),

which is exactly the correction on Vi; see (18). &'

Lemma 3. For SSC, we have

Bm = ΠB̃mΠ
t and Bm = ΠB̃mΠ

t.
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Proof. Let uk = Πũk. ApplyingΠ to (19) and noting that

f̃ = Πtf, and Ãũk = ΠtAuk,

we then get
uk+1 = uk +ΠB̃Πt(f −Auk).

ThereforeBm = ΠB̃mΠ
t. The formulae for Bm is obtained similarly. &'

Combining Lemma 3, (5), (6), and Theorem 3, we obtain the X-Z identity.

Theorem 4 (X-Z identity). Suppose assumption (A) holds. Then

‖(I −RJQJA)(I −RJ−1QJ−1A)...(I −R0Q0A)‖2A = 1− 1
1 + c0

, (20)

where

c0 = sup
‖v‖A=1

infPJ
i=0 vi=v

J∑
i=0

‖Rti(AiPi
J∑
j=i

vj −R−1
i vi)‖2R−1

i

.

In particular, for Ri = A−1
i ,

‖(I − PJ )(I − PJ−1) · · · (I − P0)‖2A = 1− 1
1 + c0

, (21)

where

c0 = sup
‖v‖A=1

infPJ
i=0 vi=v

J∑
i=0

‖Pi
J∑

j=i+1

vj‖2A.
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