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Summary. The paper is devoted to fast iterative solvers for frequency-domain finite element
equations approximating linear and nonlinear parabolic initial boundary value problems with
time-harmonic excitations. Switching from the time domain to the frequency domain allows us
to replace the expensive time-integration procedure by the solution of a simple linear elliptic
system for the amplitudes belonging to the sine- and to the cosine-excitation or a large non-
linear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively.
The fast solution of the corresponding linear and nonlinear system of finite element equations
is crucial for the competitiveness of this method.

1 Introduction

In many practical applications, for instance, in electromagnetics and mechanics, the
excitation is time-harmonic. Switching from the time domain to the frequency do-
main allows us to replace the expensive time-integration procedure by the solution
of a simple elliptic system for the amplitudes. This is true for linear problems, but
not for nonlinear problems. However, due to the periodicity of the solution, we can
expand the solution in a Fourier series. Truncating this Fourier series and approxi-
mating the Fourier coefficients by finite elements, we arrive at a large-scale coupled
nonlinear system for determining the finite element approximation to the Fourier co-
efficients. In the literature, this approach is called multiharmonic FEM or harmonic-
balanced FEM, and has been used by many engineers in different applications. see,
e.g. [1] and the references therein.

Reference [2] provided the first rigorous numerical analysis for the eddy cur-
rent problem. The practical aspects of the multiharmonic approach, including the
construction of a fast multigrid preconditioned QMR solver for the Jacobi system
arising in every Newton step and the implementation in an adaptive multilevel set-
ting, are discussed in [3] by the same authors. There was no rigorous analysis of the
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multigrid preconditioned QMR solver, but the numerical results presented in this pa-
per for academic and more practical problems indicated the efficiency of this solver.

The construction of fast solvers for such systems is very crucial for the over-
all efficiency of this multiharmonic approach. In this paper, we look at linear and
nonlinear, time-harmonic potential problems. We construct and analyze an almost
optimal preconditioned GMRes solver for the Jacobi systems arising from the New-
ton linearization of the large-scale coupled nonlinear system. This preconditioner is
not robust with respect to the excitation frequency. In the linear case we are able to
construct a robust preconditioner used in a MinRes solver. The multiharmonic ap-
proach is presented in Sect. 2, whereas the two different preconditioners and solvers
are discussed in Sects. 3 and 4.

2 Frequency-Domain Finite Element Equations

Let us consider the following nonlinear, parabolic, scalar potential equation with a
homogeneous Dirichlet boundary condition and an inhomogeneous initial condition
as our model problem:⎧⎨⎩α∂u∂t −∇ · (ν(|∇u|)∇u) = f in Ω × (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,
u(x, t) = 0 for (x, t) ∈ ∂Ω × [0, T ],

(1)

where the right-hand side f(·, ·) is given by a time-harmonic excitation with the
frequency ω, i.e.

f(x, t) = f c(x) cos(ωt) + fs(x) sin(ωt). (2)

We assume that Ω ⊂ R3 is a bounded Lipschitz domain, α is a given uniformly
positive function in L∞(Ω), and ν : R+

0 → R+ is a continuously differentiable
function satisfying the properties

0 < νmin ≤ ν(s) ≤ νmax for s ≥ 0, (3)

and s �→ sν(s) is Lipschitz and strongly monotone for s ≥ 0. (4)

These conditions ensure that there exists at least a unique weak solution to the initial
boundary value problem (1), see [14]. In the linear case where the coefficient ν is
independent of |∇u|, the solution u(x, t) = uc(x) cos(ωt) + us(x) sin(ωt) is time-
harmonic as well, and we get an elliptic boundary value problem for defining the
unknown amplitudes uc and us which only depend on the spatial variable x. This is
not true in the nonlinear case. However, the solution u to (1) is still periodic in time,
with frequency ω. Thus, we have the Fourier series representation

u(x, t) =
∞∑
k=0

uck(x) cos(kωt) + usk(x) sin(kωt),
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where the Fourier coefficients are given by

uck(x) =
2
T

∫ T

0

u(x, t) cos(kωt) dt and usk(x) =
2
T

∫ T

0

u(x, t) sin(kωt) dt.

Here, the period is T = 2π/ω. Similarly, the potential

Ψ [u](x, t) := ν(|∇u|)∇u(x, t)

can be expressed as a Fourier series

Ψ [u](x, t) =
∞∑
k=0

Ψ ck [u](x) cos(kωt) + Ψsk [u](x) sin(kωt)

with vector-valued Fourier coefficients Ψ ck and Ψ sk . Approximating u and Ψ by the
truncated series

u(x, t) ≈ ũ(x, t) :=
N∑
k=0

uck(x) cos(kωt) + usk(x) sin(kωt) (5)

and

Ψ [u](x, t) ≈ Ψ̃ [ũ](x, t) :=
N∑
k=0

Ψ ck [ũ](x) cos(kωt) + Ψsk [ũ](x) sin(kωt)

yields the following system of nonlinear equations for the Fourier coefficients:

αω

⎛⎜⎜⎜⎜⎜⎝
0 1
−1 0

. . .
0 N
−N 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
uc1
us1
...
ucN
usN

⎞⎟⎟⎟⎟⎟⎠−∇ ·

⎛⎜⎜⎜⎜⎜⎝
Ψ c1 [ũ]
Ψs1 [ũ]
...
Ψ cN [ũ]
ΨsN [ũ]

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
f c

fs

...
0
0

⎞⎟⎟⎟⎟⎟⎠ . (6)

Throughout this paper, we denote by u := (u c1, us1, . . . , ucN , u
s
N)T the vector of 2N

Fourier coefficients and by ũ the approximation to u given by the finite series ( 5). We
shall solve a variational problem for u in H 1

0 (Ω)2N := (H1
0 (Ω))2N , where H1

0 (Ω)
is the Sobolev space of order 1 on Ω, with vanishing trace on the boundary of Ω.
Note that the Fourier coefficients corresponding to k = 0 need not be solved for due
to the initial condition, cf. [4].

The finite element approximation to (6) leads to a large nonlinear system of finite
element equations of the form

Fh(uh) = fh (7)

for determining the finite element solution

S1
h :=

(
span{φj}Nh

j=1

)2N

* ũh ↔ uh = (uc1,h, u
s
1,h, . . . , u

c
N,h, u

s
N,h)

T ∈ R2N ·Nh
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to the Fourier coefficients u ∈ H 1
0 (Ω)2N . Here, φj are piecewise linear basis func-

tions in H1
0 (Ω). Thus the multiharmonic approach yields a time-independent non-

linear system for the solution of which highly parallel solvers can be constructed.
Following [2] we can show that under standard regularity assumptions, the dis-

cretization error behaves like O(h + N−1) with respect to the L2((0, T ), H1(Ω))
norm.

Solving (7) by Newton’s method (τn = 1)

un+1
h = unh + τnwn

h = unh + τnF′
h(unh)−1(fh − Fh(unh)), (8)

we have to solve the large-scale linear system

F′
h(unh)wn

h = rnh := fh − Fh(unh), (9)

with the Jacobi matrix Fh
′(unh) as system matrix and the residual rnh as right-hand

side.
Reference [4] show that the Jacobi-systems (9) can successfully be solved by

the preconditioned GMRes method using a special domain decomposition precon-
ditioner. We will explain the construction of this preconditioner for the correspond-
ing linear problem in the next section, but the results remain valid for the Jacobi-
systems (9) too.

In the remainder of this paper, we discuss preconditioned iterative methods for
solving linear systems of the form(

Kh σMh

−σMh Kh

)(
uch
ush

)
=

(
f c
h
fs
h

)
, (10)

arizing from the time-domain finite element discretization of the initial-boundary
value problem (1) with the time-harmonic excitation (2) in the linear case where the
coefficient ν is independent of |∇u|. The coefficient σ is equal to αω. Here and in
the following, we assume that α is a positive constant. The stiffness matrix Kh and
the mass matrix Mh are computed from the bilinear forms∫

Ω

ν(x)∇φ(x) · ∇ψ(x) dx and
∫
Ω

φ(x)ψ(x) dx,

respectively. The system matrix Dh in (10) is obviously positive definite and non-
symmetric (block skew-symmetric).

3 Domain Decomposition Solver

Following [13], we propose a non-symmetric two-level Schwarz preconditioner for
(10) of the form

C−1
h = IhHD−1

H IHh + βB−1
h , (11)

where DH is a coarse grid version of Dh, IHh and IhH are appropriate restriction and
prolongation operators, Bh is a symmetric positive definite (SPD) preconditioner
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for the SPD part Ah = blockdiag(Kh,Kh) of Dh, and β is a positive scaling con-
stant. [5] proposed a wire-basket-based domain decomposition method that gives an
effective preconditioner Bh for the symmetric positive definite matrix Ah, with a
condition number estimate which is independent of jumps in the coefficient and de-
pends only polylogarithmically onH/h, see also [11]. Using this wire-basket domain
decomposition preconditioner Bh in (11), we arrive at the following convergence es-
timate for the GMRes preconditioned by the Xu-Cai preconditioner ( 11):

Theorem 1 Assume that the adjoint linear problem is H 1+s(Ω)2-coercive with
some s ∈ (0, 1], and H is sufficiently small, specifically H s < c(1 + log(H/h))−2.
Then the GMRes method preconditioned by the preconditioner ( 11) with the wire-
basket component Bh converges and the convergence estimate

‖rmh ‖Ah
≤

(
1− c c−4

log

(
1 + c2log

)−2
)m/2

‖r0
h‖Ah

:= γ(H/h)m/2‖r0
h‖Ah

holds for the preconditioned residual rmh = C−1
h (fh−Dhumh ) at them-th iteration,

where clog := 1 + log(H/h), 0 < γ(H/h) < 1, and the constant c depends on ν
and σ, but not on H and h.

The proof of this theorem can be found in [4]. In the same paper we present our
numerical results which show that our preconditioned GMRes method is a quite ef-
ficient solver for the linear system (10) and can efficiently be used for solving the
Jacobi-systems (9) as well. The number of iterations depends only polylogarithmi-
cally onH/h. In order to clarify the dependence on σ, [ 7] performed a Fourier anal-
ysis of the preconditioned matrix C−1

h Dh for the corresponding one-dimensional
problem with constant ν, where the exact SPD part Ah was used as Bh, andH = 2h.
This analysis shows that this preconditioner is not robust with respect to σ, see also
the second line of Table 2. In the next section we present a robust preconditioner for
the linear system (10) in an equivalent symmetric, but indefinite setting.

4 A Symmetric and Indefinite Reformulation

The non-symmetric and positive definite system (10) can be reformulated in the fol-
lowing equivalent form(

Mh Kh

Kh −σ2Mh

)(
ush
1
σu

c
h

)
=

( 1
σ f

c

h
fs
h

)
(12)

with a symmetric but indefinite system matrix Dh. For simplicity, we use the same
notation Dh for the system matrix in (10) and (12). It follows from [10] that the
block-diagonal preconditioner

Ch =
1
σ

(
σMh +Kh 0

0 σ2(σMh +Kh)

)
(13)
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is robust with respect to both the discretization parameter h and the bad parameter
σ. More precisely, the condition number

κ(Ch
−1Dh) = ‖Ch

−1Dh‖Ch
‖Dh

−1Ch‖Ch
= |λ2Nh

| / |λ1| ≤ c = const (14)

can be estimated by a positive constant c that is independent of both h and σ, where
the eigenvalues of the preconditioned matrix Ch

−1Dh are ordered in such a way
that |λ2Nh

| ≥ |λ2Nh−1| ≥ · · · ≥ |λ1| > 0. Therefore, solving

Ch
−1Dhuh = Ch

−1fh

by means of the MinRes method proposed by [8], we can ensure that the precondi-
tioned residual r2m

h = Ch
−1fh−Ch

−1Dhu2m
h of the 2m-th MinRes iterate satisfies

the iteration error estimate

‖r2m
h ‖Ch

≤ 2qm

1− q2m ‖r
0
h‖Ch

(15)

with q = (κ(Ch
−1Dh)−1)/(κ(Ch

−1Dh)+1), see e.g. [12] or [6]. Thus, the num-
ber of MinRes iterations required for reducing the initial error by some fixed factor
ε ∈ (0, 1) is independent of both h and σ. Of course, in practice, the diagonal blocks
σMh + Kh in the preconditioner (13) should be replaced by appropriate precondi-
tioners, e.g. by appropriate domain decompostion or multigrid preconditioners, see
e.g. [11].

Applying again the Fourier Analysis (FA) to our one-dimensional problem gives
quantitative rates which are displayed in Table 1, for σ ranging from 10−10 to 1010.

Table 1. Convergence rate q resulting from the FA (ε = 10−5).

log10σ −10 −8 −6 −4 −2 0 2 4 6 8 10

h = 1/60 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.021 0.0002 < ε
h = 1/120 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.072 0.0009 < ε
h = 1/1,200 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.17 0.072 0.0009
h = 1/12,000 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.17 0.17 0.072
h = 1/120,000 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.17 0.17 0.17

Table 2 provides the MinRes iteration numbers which are needed for reducing the
initial error by the factor ε = 10−5 for different h and σ. The second line contains
the preconditioned GMRes iterations for the constellation h = 1/60 andH = 1/10,
where we use the preconditioner (11) with Bh = Ah. Both the FA (Table 1) and
the numerical experiments (Table 2) were performed for the one-dimensional lin-
ear problem resulting in the stiffness matrix Kh = h−1tridiag(−1, 2,−1) and in
the mass matrix Mh = (h/6)tridiag(1, 4, 1) for the case ν = 1. However, due to
the estimates (14) and (15) the numerical behavior observed in our one-dimensional
example is characteristic for the three-dimensional linear problem as well.
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Table 2. Number of GMRes and MinRes iterations for ε = 10−5.

log10σ −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

GMRes 1 1 1 1 1 1 2 2 2 3 4 5 9 18 36 52 52 52 52 52 52
h = 1/60 1 1 1 1 1 1 3 3 3 5 7 11 13 13 14 10 6 4 4 2 2
h = 1/120 1 1 1 1 1 1 3 3 3 5 7 11 13 13 14 12 8 4 4 2 2
h = 1/1,200 1 1 1 1 1 1 3 3 3 5 7 11 15 13 14 13 12 10 6 4 4
h = 1/12,000 1 1 1 1 1 1 3 3 3 5 7 11 15 13 14 13 12 12 11 10 6
h = 1/120,000 1 1 1 1 1 1 3 3 3 5 7 11 15 13 14 13 12 12 11 10 10

5 Conclusions, Outlook, and Acknowledgments

In this paper we have considered the harmonic and multiharmonic approach to the
solution of linear and nonlinear parabolic initial-boundary value problems with har-
monic excitation. We have proposed two solution strategies based on a precondi-
tioned GMRes method for the positive definite and non-symmetric problem formu-
lation and a preconditioned MinRes iteration method for the symmetric and indefinite
reformulation of the problem. The preconditioner for the GMRes method is a two-
level Schwarz preconditioner consisting of a coarse grid solver for the original non-
symmetric problem and a wire-basket-based domain decomposition preconditioner
for the SPD part. This iterative solver works well for both the linear system ( 10)
arizing from the linear time-harmonic problem and the Jacobi-systems ( 9) arizing in
every step of the Newton iteration (8) for solving the nonlinear equations (7). This
preconditioner is highly parallel, but not robust with respect to the bad parameter σ.
A robust preconditioner can be constructed for the linear case where ν is indepen-
dent of |∇u|. The preconditioner used in the MinRes method has a block-diagonal
structure and is robust with respect to both the discretization parameter h and the
bad parameter σ. Of course, other iterative methods are possible like the symmetric
Uzawa CG method considered in [10] or the QMR method used in [3]. Furthermore,
the robust all-at-once multigrid solvers developed by [ 9] for solving saddle point
problems can be an alternative to the preconditioned Krylov-subspace methods con-
sidered in this paper. The preconditioned GMRes and MinRes solvers presented in
this paper can be generalized to nonlinear eddy current problems studied in [ 2] and
[3].
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Fund (FWF) under the grant P19255 and by the Award No. KUS-C1-016-04, made
by King Abdullah University of Science and Technology.
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