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Summary. Schwarz domain decomposition methods can be analyzed both at the continu-
ous and discrete level. For consistent discretizations, one would naturally expect that the dis-
cretized method performs as predicted by the continuous analysis. We show in this short note
for two model problems that this is not always the case, and that the discretization can both
increase and decrease the convergence speed predicted by the continuous analysis.

1 Introduction

Classical Schwarz methods have been analyzed historically both at the continuous
and the discrete level, see for example [7, 8, 9, 10, 11] and references therein for
continuous analysis, [5, 12] and references therein for analysis at the discrete level.
Over the last decade, optimized Schwarz methods have been extensively developed
at the continuous level. These methods converge significantly faster than the clas-
sical Schwarz methods, see for example [6], and references therein. More recently,
Schwarz methods have also been developed for systems of partial differential equa-
tions, see for example [4] for Euler equations, [2] for the Cauchy–Riemann equa-
tions, or [1, 3] for Maxwell’s equations, and it was observed in two particular cases
that a discretized Schwarz method converged faster than predicted by the continuous
analysis. The purpose of this note is to explain this observation for the case of the
Cauchy–Riemann equations, and also to reveal a previously not observed discrep-
ancy for the case of the positive definite Helmholtz operator, η−Δ, η > 0 (note that
we do not treat the indefinite Helmholtz operator, where η < 0).

2 The Cauchy–Riemann Equations

Classical and optimized Schwarz methods have been analyzed in [2] at the continu-
ous level for the Cauchy Riemann equations,
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Lu :=
√
ηu +A∂xu +B∂yu = f , A =

[
−1 0
0 1

]
, B =

[
0 1
1 0

]
, (1)

and it was observed in the classical Schwarz case that the discretized algorithms
converged faster than predicted by the continuous analysis. The finite volume dis-
cretization used in these experiments was on a Cartesian mesh with mesh points
xlm = (lΔx,mΔy), l,m ∈ Z, namely

Lul,m :=
(
L1ul,m
L2ul,m

)
=

(
fl,m
gl,m

)
=: f l,m,

L1ul,m :=
√
ηul,m + (−D+

x −
D+

y −D−
y

2 )ul,m +
D+

y +D−
y

2 vl,m,

L2ul,m :=
√
ηvl,m + (D−

x −
D+

y −D−
y

2 )vl,m +
D+

y +D−
y

2 ul,m,

(2)

whereD±
x andD±

y are the usual finite difference operators in x and y directions. We
consider now a decomposition of Ω = R2 into two subdomainsΩ1 = (−∞, a)×R

and Ω2 = (b,∞) × R. In the interior of Ω1 the Eq. (2) is verified for all l < l1
and for Ω2, it is verified for all l > l2. A discrete Schwarz algorithm with general
transmission conditions is

Lu1,n
l,m = f l,m, l < l1,

L2ul1,m = gl1,m,

u1,n
l1,m

+ S1v1,n
l1,m

= u2,n−1
l1,m

+ S1v2,n−1
l1,m

,

Lu2,n
l,m = f l,m, l > l2,

L1ul2,m = fl2,m,

v2,n
l2,m

+ S2u2,n
l2,m

= v1,n−1
l2,m

+ S2u1,n
l2,m

.
(3)

where l1, l2 are the indices of the interface points, and S 1,2 are finite difference
operators that may contain parameters chosen in order to obtain better convergence
than with the classical algorithm. If only information following the characteristics
are exchanged, S1,2 ≡ 0, we obtain the classical Schwarz algorithm, see [2].

To simplify the analysis, we use the same discretization step in the x and y di-
rection, h := Δx = Δy. We denote the overlap parameter by δ := l1 − l2, and
use a discrete Fourier transform to study convergence properties of algorithm ( 3).
Since we study the evolution of the error, it is sufficient to study the homogeneous
counterpart of (3), and we look for the solutions of the form

uj,nl,m =
∑
k

αj,n(k)elhλ(k)eikmh

(
ûj,nk,m
v̂j,nk,m

)
, (4)

where j = 1, 2 denotes the subdomain index and n the iteration number of the
Schwarz algorithm. At each iteration and in each subdomain, the iterates satisfy for
each discrete frequency k the system of equations

√
ηûk,m − eλ(k)h−1

h ûk,m + 2−eikh−e−ikh

2h ûk,m + eikh−e−ikh

2h v̂k,m = 0,
√
ηv̂k,m + 1−e−λ(k)h

h v̂k,m + 2−eikh−e−ikh

2h v̂k,m + eikh−e−ikh

2h ûk,m = 0.
(5)

If we denote by φ := eλ(k)h−1
h and by ŵ := v̂k,m

ûk,m
, we obtain from the first equation

of (5) that
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φ =
√
η +

akh

2
+ bkŵ, (6)

where bk = i sin(kh)
h = ik + O(h) and ak = 2(1−cos(kh))

h2 = k2 + O(h) are the
symbols of the discrete first and second order derivative with respect to y. Replacing
this result into the second equation of (5) we obtain an equation for ŵ,

bk
((√

η + akh
2

)
h+ 1

)
ŵ2 +

((√
η + akh

2

) ((√
η + akh

2

)
h+ 2

)
+ b2kh

)
ŵ

+ bk
((√

η + akh
2

)
h+ 1

)
= 0.

This equation has solutions ŵ1,2, which give two corresponding values of φ1,2 with
opposite signs, whose asymptotic behavior for h small is

φ1,2(k, h) = ±
√
η + k2 +O(h).

Since subdomain solutions need to remain bounded, they must be of the form

uj,nl,m =
∑
k

αj,n(k)(φjh+ 1)leikmh
(
ûj,nk,m
v̂j,nk,m

)
. (7)

If we denote by σ1,2 the Fourier symbols of the operators S 1,2, and insert (7) into the
interface conditions of algorithm (3), we obtain for each frequency k

α1,n(k)(û1
k,m + σ1v̂

1
k,m)(φ1h+ 1)l1 = α2,n−1(k)(û2

k,m + σ1v̂
2
k,m)(φ2h+ 1)l1 ,

α2,n(k)(v̂2
k,m + σ2û

2
k,m)(φ2h+ 1)l2 = α1,n−1(k)(v̂1

k,m + σ2û
1
k,m)(φ1h+ 1)l2 .

Taking into account that ŵ = v̂k,m

ûk,m
and using (6), the convergence factor of algorithm

(3) is

ρ(k, η, δ, h) =
(

α2,n

α2,n−2

) 1
2

=
(

1+σ1v̂2
1+σ1v̂1

· σ2+v̂1
σ2+v̂2

) 1
2 ·

(
φ2h+1
φ1h+1

) δ
2

=
(
bk+σ1

“
φ2−

√
η− akh

2

”
bk+σ1

“
φ1−

√
η− akh

2

” · bkσ2+
“
φ1−

√
η− akh

2

”
bkσ2+

“
φ2−

√
η− akh

2

”
) 1

2

·
(
φ2h+1
φ1h+1

) δ
2
.

(8)

The maximum ρmax of this convergence factor over all relevant frequencies k ∈
[0, kmax], with the estimate kmax = π

h , determines the overall contraction factor of
the method, and hence the rate of convergence of the associated algorithm. Different
classes of interface conditions were studied at the continuous level in [2]:

Case 1: σ1 = σ2 = 0. This case corresponds to the classical Schwarz algorithm
which exchanges characteristic information at the interfaces.

Proposition 1. Let σ1 = σ2 = 0. In the non-overlapping case of algorithm (3) , δ =
0, the convergence factor attains its maximum for h small at kb = 2

1
2 ·3− 1

4 η
1
8 ·h− 3

4 ,
which leads to the overall contraction factor

ρmax := ρ(kb, η, 0, h) = 1− 2
3
2 · 3− 3

4 η
3
8 h

3
4 +O(h).

In the overlapping case of algorithm (3) , we have for

δ = 1 : kb = η
1
4 · h− 1

2 , ρmax = 1− 2η
1
4 · h 1

2 +O(h),
δ = 2 : kb = η

1
4 · 2− 1

2 · h− 1
2 , ρmax = 1− 2

3
2 η

1
4 · h 1

2 +O(h).
(9)
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Remark 1. In the non-overlapping case, the convergence factor predicted by the con-
tinuous analysis in [2] was 1 − O(h), but faster convergence was observed numer-
ically, a gap closed by the present analysis. In the overlapping case however, for
δ = 1, 2 and probably also bigger δ, the convergence factors from the discrete and
continuous analysis have the same asymptotic behavior, see [2].

Case 2: σ1 = bk√
η+p , σ2 =

√
η−p
bk

, a case with one parameter p > 0 to choose
for best performance. Since bk is the discrete symbol of the tangential derivative,
this case corresponds to the optimized algorithm where local operators are used in
the transmission conditions expressed with first order derivatives. Note that even if
we have bk in the denominator, it suffices to multiply both sides of the transmission
conditions with bk in order to obtain local operators.

Proposition 2. Let σ1 = bk√
η+p and σ2 =

√
η−p
bk

. In the non-overlapping case of
algorithm (3), δ = 0, the optimized parameter p∗ is for h small solution of

ρ(k1(p), η, 0, h, p) = ρ(kmax, η, 0, h, p), (10)

where k1(p) is a maximum of ρ, and we have the asymptotic result

k1 =
Ck1
h
, p∗ =

Cp√
h
, ρmax = 1− 1

4Cp
· (3C2

p + 8
√
η)
√
h+O(h).

The constants Ck1 and Cp can be explicitly computed: if θ denotes the real root of
6x3 − 20x2 + 19x− 3 = 0, then we get Ck1 = arccos(θ) = 1.373593, and

Cp = 2/(−3 · cos(Ck1)3 + 6 · cos(Ck1)2 + 3 · cos(Ck1)− 6
+16 · ((−1 + cos(Ck1 )) · (3 · cos(Ck1)− 5))1/2) · (−(6 · cos(Ck1)

3

−12 · cos(Ck1)2 − 6 · cos(Ck1) + 12
−32 · ((−1 + cos(Ck1 )) · (3 · cos(Ck1)− 5))1/2) · η1/2 · (cos(Ck1)3

−2 · cos(Ck1 )2 − cos(Ck1 ) + 2))1/2

= 0.7460898 · η 1
4 .

Proposition 3. Let σ1 = bk√
η+p and σ2 =

√
η−p
bk

. In the overlapping case, δ = 1, the
optimized parameter p∗ is for h small solution of the equation

ρ(k1(p), η, δ, h, p) = ρ(kmin, η, δ, h, p), (11)

where again k1(p) is a maximum of ρ, and kmin ≥ 0 is the minimum frequency on
the interface, and we have asymptotically

p∗ = 2−
1
3 · (k2

min + η)
1
3 · h− 1

3 , k1 = 2
1
3 · (k2

min + η)
1
6 · h− 2

3 ,

ρmax = 1− 4 · (η + k2
min)

1
6 · 2 1

3 · h 1
3 +O(h).

The same asymptotic behavior is also obtained for bigger overlap, δ > 1.
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Remark 2. In both Propositions 2 and 3, the asymptotic analysis of the discretized
algorithm presented here and the continuous algorithm from [ 2] predict the same
asymptotic performance.

Case 3: σ1 = σ2 = σ = bk√
η+p , where we can again choose p > 0 for best

performance.

Proposition 4. The optimized parameter p∗ is for h small solution of the equation

ρ(k1(p), η, δ, h, p) = ρ(k2(p), η, δ, h, p), (12)

where k1(p) and k2(p) are maxima of ρ. In the case δ ≤ 3, which means no or small
overlap (at most 3 mesh cells), we have the asymptotic result

p∗ =
Cp

h
, k1 =

Ck1√
h
, k2 =

Ck2
h
,

ρmax = 1− 2
2C2

k1
+ Cp

√
η + δC2

k1
Cp

CpCk1

√
h+O(h).

In the case with more overlap, δ ≥ 4, we obtain for h small

p∗ =
Cp√
h
, k1 =

Ck1

h
1
4
, k2 =

Ck2

h
3
4
,

ρmax = 1− 2
2C2

k1
+ Cp

√
η

CpCk1
h

1
4 +O(h

1
2 ).

The constants can again be computed: for example for the zero or small overlapping
case, we obtain

δ = 0 : Cp = 0.383205, Ck1 = 0.437724η
1
4 , Ck2 = 2.29295,

δ = 1 : Cp = 0.068781, Ck1 = 0.182338η
1
4 , Ck2 = 2.71717,

(13)

and for a case with bigger overlap, δ = 4, we get

Cp =
1
2
η

1
4 , Ck1 =

1
2
η

3
8 , Ck2 =

1
2
η

1
8 . (14)

We observed that for δ > 4 the factor one half in the constants (14) is replaced by a
factor that becomes smaller and smaller, as δ becomes larger.

Remark 3. Again there is a substantial difference between the continuous analysis
from [2] and the discrete analysis presented here: the continuous analysis predicted
the convergence factor 1−O(h

1
3 ) without overlap, and 1−O(h

1
4 ) with overlap.

Such differences are not only restricted to the somewhat exotic example of the
Cauchy–Riemann equations, they were also observed when the classical Schwarz
method is applied to Maxwell’s equations, see [3], and we will show in the next
section that even in the case of simple positive definite scalar partial differential
equations such differences can occur.
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3 The Positive Definite Helmholtz Equation

Optimized Schwarz methods have been analyzed thoroughly for the positive definite
Helmholtz equation at the continuous level in [6], and extensive numerical tests have
been presented which illustrate the performance predicted by the continuous analy-
sis. We show in this section that there are certain, quite natural discretizations which
can lead again to differences in the performance.

We use the same Cartesian mesh on Ω = R2 with mesh points xl,m =
(lΔx,mΔy), l,m ∈ Z, and we consider the five point finite difference discretization
of the positive definite Helmholtz equation (η −Δ)u = f ,

Lul,m :=
(
η −D+

xD
−
x −D+

y D
−
y

)
ul,m = fl,m. (15)

With the same decomposition as in Sect. 2, a general discrete Schwarz algorithm
applied to (15) is

Lu1,n
l,m = fl,m, l < l1, Lu2,n

l,m = fl,m, l > l2,

B1u
1,n
l1,m

= B1u
2,n−1
l1,m

, j ∈ Z, B2u
2,n
l2,m

= B2u
1,n−1
l2,m

, j ∈ Z,
(16)

where B1,2 denote the discrete transmission conditions (Dirichlet or Robin). We set
again h := Δx = Δy and δ := l1 − l2 for the overlap. Using a discrete Fourier
analysis in the y direction, one can show the following results:

Proposition 5. For Dirichlet transmission conditions,B1,2 = Id, and one mesh size
overlap, δ = 1, the asymptotic convergence factor of algorithm (16) for h small is
given by

ρmax = 1−√ηh+O(h2),

which is identical to the result obtained from a continuous analysis.

Proposition 6. For Robin transmission conditions discretized by one-sided finite dif-
ferences, B1 := D−

x + p and B2 := D+
x − p, the optimized Robin parameter and

asymptotic convergence factor of algorithm (16) for h small are given by

δ = 1: p∗ = 2
1
4 η

1
4h−

1
2 , ρmax = 1− η 1

4 2
3
4
√
h+O(h),

δ = 2: p∗ = 2−
1
3 η

1
3h−

1
3 , ρmax = 1− 2η

1
6 2

1
3h

1
3 +O(h

2
3 ).

(17)

Remark 4. In the case δ = 2 with overlap 2h, and one-sided finite difference dis-
cretization of the normal derivative, the asymptotic performance of the discretized
algorithm is as predicted by the continuous analysis, see [6]. However with δ = 1,
which means minimal overlap, the asymptotic performance of the discretized over-
lapping algorithm is worse, like predicted for the non-overlapping algorithm by the
continuous analysis in [6]. The benefit of the overlap is thus lost with this discretiza-
tion!

For Robin transmission conditions obtained by centered finite differences, the
algorithm (16) is given by
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Lu1,n
l,m = fl,m, l < l1, j ∈ Z,

(D−
x +(η−D+

y D
−
y )h2 +p)u1,n

l1,m
= (D+

x −(η−D+
y D

−
y )h2 +p)u2,n−1

l1,m
+hfl1,m,

Lu2,n
l,m = fl,m, l > l2, j ∈ Z,

(D+
x −(η−D+

y D
−
y )h2−p)u

2,n
l2,m

= (D−
x +(η−D+

y D
−
y )h2−p)u

1,n−1
l2,m

−hfl2,m.
(18)

Proposition 7. For the discrete optimized Schwarz algorithm (18), the optimized
Robin parameter and asymptotic convergence factor are for h small given by

δ = 0 : p∗ = 2
1
4

√
2

1
2 +1

4+3·2
1
2
η

1
4h−

1
2 , ρmax = 1− 2η

1
4 (2 + 3 · 2− 1

2 )
1
2
√
h+O(h),

δ = 1 : p∗ = 2−
1
3 η

1
3 h−

1
3 , ρmax = 1− 4η

1
6 2

1
3h

1
3 +O(h

2
3 ).

(19)

Remark 5. With the centered finite difference approximation of the normal deriva-
tive, the discretized optimized Schwarz algorithm for the positive definite Helmholtz
equation has the same asymptotic convergence behavior as predicted by the continu-
ous analysis in [6].

4 Conclusions

As we have seen, the discretization can modify the convergence behavior of Schwarz
algorithms, compared to the predicted behavior by a continuous analysis. We note
however that in all cases we have analyzed, different behavior is only observed when
the overlap is sufficiently small. In the case of enough overlap, the results of the
discrete and continuous analysis are consistent. This observation suggests that the
reason for possibly different behavior of the discrete algorithm could lie in the fact
that the physical properties are in those cases not well enough resolved in the over-
lapping region of very few grid points.
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