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1 Summary

We present a new class of coarse spaces for two-level additive Schwarz precondi-
tioners that yield condition number bound independent of the contrast in the media
properties. These coarse spaces are an extension of the spaces discussed in [ 3]. Sec-
ond order elliptic equations are considered. We present theoretical and numerical
results. Detailed description of the results and numerical studies will be presented
elsewhere.

2 Introduction

Many problems in applied sciences occur in media that contains multiple scales and
has high contrast in the properties. For example, it is very common to have several
orders of magnitude of variations in the permeability field in natural porous forma-
tions. Domain decomposition preconditioners are often used to solve the fine-scale
system that arises from the discretization of partial differential equations. The num-
ber of iterations required by domain decomposition preconditioners is typically af-
fected by the contrast in the media properties that are within each coarse-grid block
(e.g., [3, 4]; see also [2] for the approximation on a coarse grid). It is known that
if high and low conductivity regions can be encompassed within coarse-grid blocks
such that the variation of the conductivity within each coarse region is bounded, do-
main decomposition preconditioners result to a system with the condition number
independent of the contrast (e.g., [5]). Because of complex geometry of fine-scale
features, it is often impossible to separate low and high conductivity regions into
different coarse-grid blocks. Thus, the contrast will adversely affect the number of
iterations required by domain decomposition preconditioners.

The design and analysis of preconditioners that converge independent of the con-
trast is important for many applications, such as porous media flows where flow prob-
lems are solved multiple times. In [3], we introduce a coarse space based on local
spectral problems (see also [1]). These spaces are motivated by weighted Poincaré
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estimates that arise in the proofs of L2 approximation property of the coarse in-
terpolation, see [3, 6, 8]. In particular, the spectrum of local eigenvalue problem
contains eigenvalues that are small and asymptotically vanish as the contrast in-
creases, and thus, there is a gap in the spectrum. The eigenvectors corresponding
to these small (asymptotically vanishing) eigenvalues represent the high-conducting
features. The number of these eigenvectors is the same as the number of discon-
nected high-conductivity inclusions. The coarse space is constructed such that the
basis functions span the eigenfunctions corresponding to these small (asymptotically
vanishing) eigenvalues as well as some nodal multiscale basis functions. In [ 3], we
prove that if the coarse space includes the basis functions associated to these eigen-
functions, then the condition number of the two level additive method is bounded
independent of the contrast of the media.

In many applications where the flow equations are solved multiple times, it is
important to choose a coarse space with a minimal dimension. The coarse spaces
constructed in [3] represent both high-conductivity channels (high-conductivity in-
clusions that connect the boundaries of a coarse-grid block) and high-conductivity
isolated inclusions. Consequently, these coarse spaces can have a large dimension.
In [3], we note that one only needs to represent channels within coarse blocks and
present a procedure for removing high-contrast isolated inclusions. In this paper, we
present a more general approach that removes the inclusions. In fact, one can con-
sider the proposed construction as an approach that complements the coarse spaces
constructed using partition of unity functions. In particular, starting with an initial
partition of unity functions, e.g., multiscale basis functions, one adds new basis
functions by using eigenvectors of weighted eigenvalue problem. In this eigenvalue
problem, the weight is computed using the gradient of the initial partition of unity
functions, see (8) below. The eigenfunctions corresponding to small (asymptotically
vanishing) eigenvalues are chosen and new basis functions that span these eigen-
functions are added to the coarse space. With a correct choice of partition of unity
functions, one can remove the inclusions and obtain the coarse space with a small
dimension. We present a theoretical result that states that the condition number of the
preconditioned system is independent of contrast. Numerical results are presented to
demonstrate our theoretical findings.

3 Problem Setting and Domain Decomposition Framework

LetD ⊂ R2 (or R3) be a polygonal domain which is the union of a disjoint polygonal
subregions {Di}Ni=1. We consider the following problem. Find u∗ ∈ H1

0 (D) such
that

a(u∗, v) = f(v) for all v ∈ H1
0 (D). (1)

Here the bilinear form a and f are defined by a(u, v) =
∫
D κ(x)∇u(x)∇v(x)dx,

and f(v) =
∫
D f(x)v(x)dx, for all u, v ∈ H1

0 (D).
We assume that {Di}Ni=1 form a quasiuniform triangulation of D and denote

H = maxi diam(Di). Let T h be a fine triangulation which refine {Di}Ni=1. We de-
note by V h(D) the usual finite element discretization of piecewise linear continuous
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functions with respect to the fine triangulation T h. Denote also by V h
0 (D) the subset

of V h(D) with vanishing values on ∂D. Similar notations, V h(Ω) and V h0 (Ω), are
used for subdomainsΩ ⊂ D.

The Galerkin formulation of (1) is to find u∗ ∈ V h0 (D) with a(u∗, v) = f(v) for
all v ∈ V h0 (D), or in matrix form

Au∗ = b, (2)

where for all u, v ∈ V h(D) we have uTAv =
∫
D
κ∇u∇v, and vT b =

∫
D
fv.

It is sufficient to consider the case of piecewise constant coefficient κ. From now
on we will assume that κ is piecewise constant coefficient in T h with value κ = κe
on each fine triangulation element e ∈ T h.

We denote by {D′
i}Ni=1 the overlapping decomposition obtained from the original

nonoverlapping decomposition {D i}Ni=1 by enlarging each subdomain D i to D′
i =

Di ∪ {x ∈ D, dist(x,Di) < δi}, i = 1, . . . , N , where dist is some distance
function and let δ = max1≤i≤N δi. Let V i0 (D′

i) be the set of finite element functions
with support in D′

i. We also denote by RTi : V i0 (D′
i) → V h the extension by zero

operator.
We will use a partition of unity {ξi}Ni=1 subordinated to the covering {D ′

i}Ni=1

such that

N∑
i=1

ξi = 1, ξi ∈ V h, and Supp(ξi) ⊂ D′
i, i = 1, . . . , N, (3)

where Supp(ξi) stands for the support of the function ξ i. This will be the partition
of unity used to truncate global functions to local ones in the proof of the stable
decomposition.

Given a coarse triangulationT H we introduceNc coarse basis functions {Φi}Nc

i=1.
We define the coarse space by V0 = span{Φi}Nc

i=1, and the coarse matrix A0 =
R0AR

T
0 where RT0 = [Φ1, . . . , ΦNc ]. We use a two level additive preconditioner of

the form

B−1 = RT0 A
−1
0 R0 +

N∑
i=1

RTi A
−1
i Ri, (4)

where the local matrices are defined by vTAiw = a(v, w) for all v, w ∈ V i =
V h0 (D′

i), i = 1, . . . , N . See [5].
We denote by {yi}Nv

i=1 the vertices of the coarse mesh T H and define

ωi =
⋃
{K ∈ T H ; yi ∈ K}, ωK =

⋃
{ωj; yj ∈ K}. (5)

We will use a partition of unity {χi}Nv

i=1 subordinated to the covering {ωi}Nv

i

such that

Nv∑
i=1

χi = 1, χi ∈ V h, and Supp(χi) ⊂ ωi, i = 1, . . . , Nc. (6)
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4 Coarse-Space-Completing Eigenvalue Problem and Stability
Estimates

In this section we define the new local spectral multiscale coarse space using eigen-
vectors of high contrast eigenvalue problems. Fist we introduce the notation for
eigenvalue problems. For any Ω ⊂ D define the matrix AΩ and the modified mass
matrix of same dimensionMΩ by

vTAΩw =
∫
Ω

κ∇v∇w and vTMΩw =
∫
Ω

κ̃vw for all v, w ∈ Ṽ h(Ω), (7)

where Ṽh = Vh(Ω) if Ω ∩ ∂D = ∅ and Ṽh = {v ∈ Vh(Ω) : v = 0 on ∂Ω ∩ ∂D}
otherwise. Here κ̃ in (7) is a weight derived from the high contrast coefficient κ and
contains the relevant information we need for the construction of the coarse basis
functions. Several possible choices for κ̃ can be considered. We refer to [ 3] for the
case κ̃ = κ. Here we will consider only the case of the piecewise constant κ̃ given
by

κ̃ = max

⎧⎨⎩κ
N∑
i=1

|∇ξi|2, κ
Nv∑
j=1

|∇χj |2
⎫⎬⎭ , (8)

where {ξ}Nj=1 and {χi}Nv

i=1 are the partition of unity introduced in (3) and (6), re-
spectively. From now on, we assume that overlapping decomposition is constructed
from the coarse mesh and ξi = χi for all i = 1, . . . , N = Nv. We consider the finite
dimensional symmetric eigenvalue problem

AΩφ = λ̃MΩφ (9)

and denote its eigenvalues and eigenvectors by { λ̃Ω	 } and {ψΩ	 }, respectively. Note
that the eigenvectors {ψΩ	 } form an orthonormal basis of Ṽ h(Ω) with respect to
the MΩ inner product. Assume that λ̃Ω1 ≤ λ̃Ω2 ≤ · · · ≤ λ̃Ωi ≤ . . . , and note that
λ̃Ω1 = 0. In particular, ψωi

	 denotes the 
-th eigenvector of the matrix associated to
the neighborhood of yi, i = 1, . . . , Nv.

In general, when κ̃ = κ and for the Neumann boundary case, if there are n
inclusions and channels, then one can observe n small (asymptotically vanishing)
eigenvalues. The eigenvectors corresponding to these eigenvalues will be used to
construct the coarse space V0. In this case, the term κ̃ = κ on the right hand side
of the eigenvalue problem results in eigenvectors that are nearly constant inside each
high conductivity inclusion/channel. When κ̃ is chosen based on ( 8), then the number
of asymptotically small eigenvalues is the same as the number of high-conductivity
inclusions in κ̃. In particular, if the partition of unity functions are piecewise linear
polynomials then κ̃ and κ have the same high-contrast structure. We are interested
in partition of unity functions that can “eliminate” isolated high-conductivity inclu-
sions and thus reduce the size of the coarse space. This can be achieved by minimiz-
ing high-conductivity components in κ̃. In particular, by choosing multiscale finite
element basis functions or energy minimizing basis functions, we can eliminate all
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isolated high-conductivity inclusions, while preserving the channels. This can be ob-
served in our numerical experiments. In Fig. 1 (below) and Fig. 2 (on page 195), we
depict κ (middle picture) and κ̃ (right picture) using multiscale basis functions on
the coarse grid. The coarse grid is depicted in the left pictures. One can observe that
isolated inclusions are removed in κ̃, and consequently, the coarse space contains
only long channels that connect boundaries of the coarse grid.

Fig. 1. Left: Coarse mesh. Center: Original coefficient. Here η = 109. Right: Coefficient eκ
computed as in (8) using (linear) multiscale basis functions.

We note that for the proposed methods, we only need to specify the eigenvectors
based on the quantities {1/λ̃ωi

l } in each ωi, i = 1, . . . , Nv. These eigenvectors are
used to construct the coarse space.

We assume that the elements of T h contained in Ω form a triangulation of Ω.
Let nh(Ω) denote the number of degrees of freedom in Ω. Given an integer L and
v ∈ V h(Ω) define

IΩL v =
L∑
	=1

(∫
Ω

κ̃vψΩ	

)
ψΩ	 . (10)

Let {χi}Nv

i=1 be a partition of unity (3). Define the coarse basis functions

Φi,	 = Ih(χiψωi

	 ) for 1 ≤ i ≤ Nv and 1 ≤ 
 ≤ Li, (11)

where Ih is the fine-scale nodal value interpolation and L i is an integer for each
i = 1, . . . , Nv. Denote by V0 the local spectral multiscale space

V0 = span{Φi,	 : 1 ≤ i ≤ Nv and 1 ≤ 
 ≤ Li}. (12)

We note that in practice one only needs to computed the first L i eigenvalues of
(9). Hierarchical approximation with several triangulation can also be consider for
the eigenvalues and eigenvectors.

Define also the coarse interpolation I0 : V h(D) → V0 by

I0v =
Nv∑
i=1

Li∑
	=1

(∫
ωi

κ̃vψωi

	

)
Ih(χiψωi

	 ) =
Nv∑
i=1

Ih
(
(Iωi

Li
v)χi

)
, (13)
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where Ih is the fine-scale nodal value interpolation and I ωi

Li
is defined in (10).

We have the following weighted L2 approximation and weighted H 1 stability
properties.

Lemma 1. For all coarse element K we have∫
K

κ̃(v − I0v)2  
1

λ̃K,L+1

∫
ωK

κ|∇v|2 (14)

∫
K

κ|∇I0v|2  max{1, 1

λ̃K,L+1

}
∫
ωK

κ|∇v|2 (15)

where λ̃K,L+1 = minyi∈K λ̃
ωi

Li+1 and ωK is the union of the elements that share
common edge with K defined in (5).

The proof of this lemma follows from the results presented in [ 3] and will be pre-
sented elsewhere.

Using Lemma 1, we can estimate the condition number of the preconditioned
operator B−1A with B−1 defined in (4) using the coarse space V0 in (12). From the
abstract domain decomposition theory we only need to prove the stable decomposi-
tion property; see [5]. From this stable decomposition property, one has the following
Lemma.

Lemma 2. The condition number of the preconditioned operator B−1A with B−1

defined in (4) is of order

cond(B−1A)  C2
0  1 +

1

λ̃L+1

where λ̃L+1 = min
1≤i≤Nv

λ̃ωi

Li+1.

It can be easily shown that the eigenvalues of the local problem scale as O(1)
assuming ξi = χi, i = 1, . . . , N = Nv, in (8). The dependency of the condition
number of overlapping decomposition (δ) and coarse grid size (H) is controlled by
the partition of unity {ξi} and {χi} in (8), respectively. The condition number is
independent of h and it is, in general, of orderO(H 2/δ2), see [3].

5 Numerical Results

In this section, we present representative 2D numerical results for the additive pre-
conditioner (4) with the local spectral multiscale coarse space defined in (12). Nu-
merical studies for the more interesting 3D case will be presented elsewhere. We take
D = [0, 1] × [0, 1] that is divided into 8 × 8 equal square subdomains. Inside each
subdomain we use a fine-scale triangulation where triangular elements constructed
from 10× 10 squares are used.
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Fig. 2. Left: Coarse mesh. Center: Original coefficient. Right: Coefficient eκ computed as in
(8) using (linear) multiscale basis functions. See Table 1.

In our first numerical example, we choose a simple permeability field that only
has isolated inclusions, see middle picture of Fig. 1. The coarse grid is demonstrated
in the left picture. Multiscale finite element basis functions with linear boundary
conditions are chosen as a partition of unity functions in ( 8). The purpose of this
example is to demonstrate that κ̃ does not have any high-conductivity components
with this choice of partition of unity functions. As a result, we have only one eigen-
function (constant) per coarse grid. Thus, there is no need to complement the space
of multiscale basis functions with linear boundary conditions. Note that if we use
the eigenvalue problem with the weight function κ, then there will be four basis
functions per node that represent inclusions. One can choose any κ̃ that is larger
than the one defined by (8). In our simulations, we add a positive constant to κ̃ to
avoid a numerical instability. In our numerical results, we observed that the number
of iterations with the weight κ̃ = κ and the weight κ̃ defined in (8) (which results
in the multiscale finite element basis functions) does not change for the contrast
η = 104, 105, 106, 107, 108. The number of iterations is 22 iterations. Due to space
limitation, we do not present detailed numerical results.

η MS EMF LSM (eκ = κ) LSM( eκ in (8))
104 98(2490.75) 62(257.86) 27(6.19) 28(7.34)
105 123(24866.24) 62(283.29) 28(6.19) 29(7.35)
106 144(248621.33) 62(286.12) 29(6.19) 29(7.35)
107 174(2486172.35) 63(286.41) 29(6.19) 30(7.35)

Dim 49 49 102 69

Table 1. Number of iterations until convergence and estimated condition number for the PCG
and different values of the contrast η with the coefficient depicted in Fig. 2. We set the toler-
ance to 1e-10. HereH = 1/8 with h = 1/80. The notation MS stands for the (linear boundary
condition) multiscale coarse space, EMF is the energy minimizing coarse space, see e.g., [7],
and LSM is the local spectral multiscale coarse space defined in (12).

In the second example, we test our approach on a more complicated permeability
field that contains inclusions and channels (see middle picture of Fig. 2). As before
we use multiscale finite element basis functions as the initial partition of unity. From
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the right picture of Fig. 2 we see that the modified weight κ̃ does not contain any
isolated inclusions and only contains long channels connecting boundaries of the
coarse-grid block. This is achieved automatically from the choice of the partition of
unity functions. There are fewer small (asymptotically vanishing) eigenvalues when
local eigenvalue problem is solved with the modified weight κ̃. Thus, with a good
choice of partition of unity functions in (8), there are fewer new multiscale basis
functions needed to achieve an optimal, in terms of the contrast, convergence. Nu-
merical results are presented in Table 1. We observe that using the proposed coarse
spaces, the number of iterations is independent of the contrast. In Table 1 we also
show the dimension of the coarse spaces. The dimension of the local spectral coarse
space is smaller if we use κ̃ in (10) instead of κ̃ = κ as in [3].
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