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1 Introduction and Problem Setting

We consider the coupling across an interface of a fluid flow and a porous media flow.
The differential equations involve Stokes equations in the fluid region, Darcy equa-
tions in the porous region, plus a coupling through an interface with Beaver-Joseph-
Saffman transmission conditions, see [1, 2, 6, 8]. The discretization consists of P2-
P0 finite elements in the fluid region, the lowest order triangular Raviart-Thomas
finite elements in the porous region, and the mortar piecewise constant Lagrange
multipliers on the interface. Due to the small values of the permeability parameter κ
of the porous medium, the resulting discrete symmetric saddle point system is very
ill conditioned. Preconditioning is needed in order to efficiently solve the resulting
discrete system. The purpose of this work is to present some preliminary results on
the extension of the modular FETI type preconditioner proposed in [ 5, 7] to the mul-
tidomain FETI-DP case.

Let Ωf , Ωp ⊂ Rn be polyhedral subdomains, define Ω = int(Ω
f ∪ Ωp

) and
Γ = ∂Ωf ∩∂Ωp, with outward unit normal vectors η i on ∂Ωi, i = f, p. The tangent
vectors on Γ are denoted by τ 1 (n = 2), or τ l, l = 1, 2 (n = 3). The exterior bound-
aries are Σi := ∂Ωi \ Γ , i = f, p. Fluid velocities are denoted by ui : Ωi → Rn,
i = f, p, and pressures by pi : Ωi → R, i = f, p.

We consider Stokes equations in the fluid regionΩ f and Darcy equations for the
filtration velocity in the porous mediumΩ p.

Stokes equations Darcy equations⎧⎨⎩
−∇ · T (uf , pf ) = ff in Ωf

∇ · uf = gf in Ωf

uf = hf on Σf

⎧⎨⎩ up = −κ
ν∇pp in Ωp

∇ · up = gp in Ωp

up · ηp = hp on Σp.
(1)

Here T (v, p) := −pI+2νDv, where ν is the fluid viscosity, Dv := 1
2 (∇v+∇vT )

is the linearized strain tensor and κ denotes the rock permeability. We assume that
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κ is a real positive constant. We impose the following interface matching conditions
across Γ (see [1, 2, 6, 8] and references therein):

(i) Conservation of mass across Γ : uf · ηf + up · ηp = 0 on Γ.
(ii) Balance of normal forces across Γ : pf − 2νηfTD(uf )ηf = pp on Γ .

(iii) Beavers-Joseph-Saffman condition: uf ·τ l = −
√
κ

αf 2ηfTD(uf )τ l, l = 1, · · · , n−
1 on Γ .

We require that 〈gf , 1〉Ωf + 〈gp, 1〉Ωp − 〈hf · ηf , 1〉Σf − 〈hp, 1〉Σp = 0 which is
the compatibility condition (see [6]).

2 Weak Formulation

In this section we present the weak version of the coupled system of partial differ-
ential equations introduced above. Without loss of generality, we consider h f = 0,
gf = 0, hp = 0 and gp = 0 in (1); see [6]. The weak problem is formulated as: Find
(u, p, λ) ∈ X ×M0 × Λ such that for all (v, q, μ) ∈ X ×M0 × Λ we have⎧⎨⎩a(u,v) + b(v, p) + bΓ (v, λ) = f(v)

b(u, q) = 0
bΓ (u, μ) = 0,

(2)

where X = Xf × Xp := H1
0 (Ωf , Σf )n × H0(div, Ωp, Σp) and M0 is the

subset of M := M f × Mp := L2(Ωf ) × L2(Ωp) ≡ L2(Ω) of pressures with
a zero average value in Ω. Here H 1

0 (Ωf , Σf) denotes the subspace of H 1(Ωf )
of functions that vanish on Σ f . The space H0(div, Ωp, Σp) consists of vector
functions in H(div, Ωp) with zero normal trace on Σp, where H(div, Ωp) :={
v ∈ L2(Ωp)n : div v ∈ L2(Ωp)

}
. For the Lagrange multiplier space we consider

Λ := H1/2(Γ ). See [6, 8] for well posedness results. The global bilinear forms are
given by

a(u,v) := af
αf (uf ,vf ) + ap(up,vp) and b(v, p) := bf(vf , pf) + bp(vp, pp),

with local forms af
αf , b

f and bp defined for uf ,vi ∈ Xi, pi, qi ∈M i by

af
αf (uf ,vf ) := 2ν(Duf ,Dvf )Ωf +

n−1∑
	=1

ναf√
κ
〈uf · τ 	,vf · τ 	〉Γ , (3)

ap(up,vp) := (
ν

κ
up,vp)Ωp , (4)

bf(vf , qf ) := −(qf ,∇ · vf )Ωf , and bp(vp, pp) := −(pp,∇ · vp)Ωp . (5)

The weak conservation of mass bilinear form is defined by
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bΓ (v, μ) := 〈vf · ηf , μ〉Γ + 〈vp · ηp, μ〉Γ , v = (vf ,vp) ∈ X, μ ∈ Λ. (6)

The second duality pairing of (6) is interpreted as 〈vp ·ηp, Eηp(μ)〉∂Ωp . HereEηp is
any continuous lifting operator from H 1/2(Γ ) to H1/2(∂Ωp); recall that Γ ⊂ ∂Ωp

and that v ∈ H0(div, Ωp, Σp), see [6]. The functional f in the right-hand side of
(2) is defined by f(v) := f f (vf ) + fp(vp), for all v = (vf ,vp) ∈ X , where
f i(vi) := (f i,vi)L2(Ωi) for i = f, p.

The bilinear forms af
αf , b

f are associated to the Stokes equations, and the bilinear

forms ap, bp to the Darcy law. The bilinear form af
αf includes interface matching

conditions 1.b and 1.c above. The bilinear form bΓ is used to impose the weak version
of the interface matching condition 1.a above.

3 Discretization and Decomposition

From now on we consider only the two-dimensional case. The ideas developed
below can be extended to the case of three-dimensional subdomains. We assume
that Ωi, i = f, p, are polygonal subdomains. For the fluid region, let X h,f and
Mh,f be P2/P0 triangular finite elements. For the porous region, let X h,p and
Mh,p be the lowest order Raviart-Thomas finite elements based on triangles. Define
Xh := Xh,f × Xh,p ⊂ X and Mh := Mh,f × Mh,p ⊂ M0. We assume that
the boundary conditions are included in the definition of the finite element spaces,
i.e., for vf ∈ Xh,f we have vf = 0 on the exterior fluid boundary Σ f and for
vp ∈Xh,p we have that vph · ηp = 0 on the porous exterior boundaryΣ p.

With the discretization chosen above, we obtain the following symmetric saddle
point linear system

⎡⎣Kf 0 MfT

0 Kp MpT

Mf Mp 0

⎤⎦
⎡⎢⎢⎢⎢⎣

uf

pf

up

pp

λ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Af BfT 0 0 CfT

Bf 0 0 0 0
0 0 Ap BpT −CpT
0 0 Bp 0 0
Cf 0 −Cp 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

uf

pf

up

pp

λ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ff

gf

fp

gp

0

⎤⎥⎥⎥⎥⎦
(7)

with matrices Ai, Bi, Ci defined by

ai(ui,vi) = viTAiui, bi(ui, qi) = qiTBiui, (ui · ηf , μ)Γ = μTCiui,

and vectors f i, gi given by f i(vi) = viTf i, gi(qi) = qiT gi, i = f, p. Matrix Af

corresponds to ν times the discrete version of the linearized stress tensor on Ω f .
Note that in the case αf > 0, the bilinear form af

αf in (3) includes a boundary term.
The matrix Ap corresponds to ν/κ times a discrete L2-norm on Ωp. Matrix −Bi is
the discrete divergence in Ω i, i = f, p, and matrices Cf and Cp correspond to the
matrix form of the discrete conservation of mass on Γ . Note that ν can be viewed as
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Fig. 1. Global interface eΓ that includes all local interfaces and the Stokes/Darcy interface Γ .

a scaling factor since it appears in both matrices Af and Ap, therefore, ν plays no
role for the preconditioning.

Let {Ωi,(	)}Ni

	=1 be geometrically conforming substructures of Ω i, i = f, p. We

also assume that {Ωf,(	)}Nf

	=1 ∪ {Ωp,(	)}N
p

	=1 forms a geometrically conforming de-
composition of Ω, hence, the two decompositions are aligned on the Stokes/Darcy
interface Γ , see Fig. 1. We define the local inner interfaces as Γ i,(	) = ∂Ωi,(	)\∂Ωi,

 = 1, . . . , N i, i = f, p. We also define the global interface

Γ̃ =

⎛⎝Nf⋃
	=1

Γ f,(	)

⎞⎠ ∪
(
Np⋃
	=1

Γ p,(	)

)
∪ Γ ≡ (Γ f ) ∪ (Γ p) ∪ Γ.

In the Stokes region Ωf,(	), we consider the following partition of the degrees of
freedom,⎡⎢⎢⎢⎣

u
f,(	)
I

p
f,(	)
I

u
f,(	)eΓ
p̄f,(	)

⎤⎥⎥⎥⎦
Interior velocities in Ωf,(	) + tangential velocities on ∂Ωf,(	)\Γ,
Interior pressures with zero average in Ω f,(	),
Interface velocities on Γ f,(	) + normal velocities on ∂Ωf,(	) ∩ Γ,
Constant pressure in Ωf,(	).

Analogously, in the Darcy regionΩ p,(	) we use,⎡⎢⎢⎢⎣
u
p,(	)
I

p
p,(	)
I

u
p,(	)eΓ
p̄p,(	)

⎤⎥⎥⎥⎦
Interior velocities in Ωp,(	),
Interior pressures with zero average in Ω p,(	),

Normal velocities on Γ p,(	) + normal velocities on ∂Ωp,(	) ∩ Γ,
Constant pressure in Ωp,(	).

Then, for i = f, p, we have the block structure:

Ai =
[
AiII A

iT
ΓI

AiΓI A
i
ΓΓ

]
, Bi =

[
BiII B

iT
ΓI

0 B̄iT

]
and Ci =

[
0 0 C̃i 0

]
.

The (2, 1) entry of B i corresponds to integrating an interior velocity against a con-
stant pressure, therefore, it vanishes due to the divergence theorem.
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Following [9] we choose the following matrix representation in each subdomain
Ωi,(	), i = f, p,

Ki,(	) =

⎡⎢⎢⎢⎢⎢⎣
A
i,(	)
II B

i,(	)T
II A

i,(	)T
ΓI 0

BiII 0 B
i,(	)
IΓ 0

A
i,(	)
ΓI B

i,(	)T
IΓ A

i,(	)
ΓΓ B̄i,(	)T

0 0 B̄i,(	) 0

⎤⎥⎥⎥⎥⎥⎦ =

[
K
i,(	)
II K

i,(	)T
ΓI

K
i,(	)
ΓI K

i,(	)
ΓΓ

]
. (8)

4 Dual Formulation

In order to simplify the notation and since there is no danger of confusion, we will
denote the finite element functions and the corresponding vector representation by
the same symbols. Let X i,(	), M i,(	) be the finite element spaces Xh and Mh re-
stricted to subdomainΩ i,(	), i = f, p, 
 = 1, . . . , N i. Define the product spaces,

W = W f ⊗W p =
⊗
i

⊗
	

Xi,(	)

andQ = M f ⊗Mp =
⊗

i

⊗
	M

i,(	). Functions in W do not satisfy any continuity
requirement at the subdomain corners or edges. In particular they do not satisfy con-
tinuity on Stokes/Stokes edges, or continuity of normal component on Darcy/Darcy
edges, neither discrete continuity of normal fluxes on Stokes/Darcy edges. The lin-
ear operatorK = diag(K f ,Kp) in (7) defined on the pair of spaces (X h,Mh), can
be extended to the pair (W , Q) defined above. The resulting matrix will be a block
diagonal.

Primal degrees of freedom and definition of W̃ : we now introduce our primal
degrees of freedom, as is usual in the constructions of FETI-DP [ 4] and BDDC
methods [3]. The primal degrees of freedom are selected accordingly for Stokes and
Darcy substructures. On the fluid side, the primal degrees of freedom are given by
the fluid velocity field at the substructure corners and by the mean value of both
components over each Stokes/Stokes edge on Γ f ; see [9, 10]. For the porous side,
the primal degrees of freedom consist of the mean value of the normal flux on each
Darcy/Darcy edge on Γ p; see [11]. For the Stokes/Darcy interface Γ , the primal de-
grees of freedom consist of the mean value of the normal (either Stokes or Darcy
velocity) flux on each Stokes/Darcy edge on Γ ; see [7]. The W̃ is the subspace of
W made of functions that are continuous on the primal degrees of freedom described
above.

Once the linear operator K = diag(K f ,Kp) in (7) is extended to (W , Q), it
can be restricted to an operator K̃ acting on (W̃ , Q). The matrix form of K̃ is no
longer block diagonal but it will have a block structure with small interaction be-
tween blocks associated to different subdomains; see [9]. In the FETI-DP method,
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we will need the inverse action of K̃ . This inverse action can be obtained by solving
a small coarse problem and a (either Darcy or Stokes) local problems for each sub-
domains.

Functions in W̃ do not satisfy the dual continuity requirements on Γ̃ . The dual
continuity requirements can be enforced using additional FETI-Lagrange multipliers
μ on Γ̃ \ Γ and the Stokes-Mortar-Darcy-Lagrange multipliers on Γ just as before.
We obtain the linear system [

K̃ B̃T

B̃ 0

] [
w

λ̃

]
=

[
b
0

]
(9)

where the vector λ̃ includes all Lagrange multiplier degrees of freedom. The ma-
trix B̃ has entries +1,−1, 0 for the degrees of freedom associated Γ f and Γ p. On
the Stokes/Darcy interface Γ , we ensure that the flux continuity across Stokes/Darcy
edges on Γ coincides with the last equation of (7). For that, we use the same La-
grange multipliers, up to the constant functions, as for the Stokes-Mortar-Darcy sys-
tem (7). We now eliminate all degrees of freedom but the ones associated to the
Lagrange multipliers to obtain a dual formulation,

B̃K̃−1B̃T λ̃ = F̃ λ̃ = b = B̃K̃−1b (10)

where λ̃ ∈ Rank(B̃). Note that applying K̃−1 requires the solution of a Stokes/Darcy
problem with a block structure and very little coupling between blocks; see [ 9].

4.1 Dirichlet Preconditioner

Let us define

SDeΓ := diag(SfeΓ , S
peΓ ) where SieΓ =:

Ni∑
	=1

Ri,(	)TD
i,(	)
1 S

i,(	)eΓ D
i,(	)
1 Ri,(	) (11)

and Si,(	)eΓ is defined from (8) via

Si,(	) =

[
S
i,(	)eΓ B̄i,(	)T

B̄i,(	) 0

]
:= K

i,(	)
ΓΓ −Ki,(	)

ΓI

(
K
i,(	)
II

)−1

K
i,(	)T
ΓI ,

IDeΓ := diag(IfeΓ , I
peΓ ) where I ieΓ =:

Ni∑
	=1

Ri,(	)TD
i,(	)
2 I

i,(	)eΓ D
i,(	)
2 Ri,(	) (12)

and I i,(	)eΓ is an identity matrix. We propose the following preconditioners:

B̃(SDeΓ + IDeΓ )B̃T . (13)
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In (11) we choose the diagonal matrix D
i,(	)
1 with entries 1/2 on both sides of

Stokes/Stokes and Darcy/Darcy edges, the value zero at the Stokes corners, and the
values γf1 (Stokes side) and γp1 (Darcy side) on the Stokes/Darcy edges. In (12) we

choose the diagonal matrix D i,(	)
2 entries equal to γf2 (Stokes side) and γp2 (Darcy

side) on the Stokes/Darcy edges, and entries equal zero elsewhere.

5 Numerical Results

In this section we present representative numerical results concerning the perfor-
mance of the FETI-DP methods introduced before. We considerΩ f = (1, 2)×(0, 1)
and Ωp = (0, 1)× (0, 1). We set μ = 1. See [6] for examples of exact solutions and
compatible divergence and boundary data. We use Conjugate Gradient (CG) and
Preconditioned Conjugate Gradient (PCG) with the Dirichlet preconditioner ( 13) to
solve the linear system (10). In our test problems we run (CG) PCG until the initial
residual is reduced by a factor of 10−6.

Table 1. Right: PCG iteration number for different number of subdomains. CG iteration num-
ber in parenthesis. Here H

h
= 4, Hf = Hp = H = 1

N
, γf

1 = 0, γp
1 = 1, γf

2 = 0, γp
2 = 0.

Left: H
h

= 8.

κ ↓ N → 2× 2 4× 4 8× 8

1 5(27) 7(57) 8(66)
10−2 7(13) 8(22) 8(36)
10−4 11(47) 19(52) 15(33)
10−6 18(74) 34(131) 43(157)

κ ↓ N → 2× 2 4× 4 8× 8

1 6(62) 9(98) 10(104)
10−2 8(23) 10(40) 10(64)
10−4 20(70) 20(61) 16(36)
10−6 29(150) 60(259) 79(275)

Table 2. Top: PCG iteration and condition number for different number of subdomains. H
h

=

4, Hf = Hp = H = 1
N

, γf
1 = 0, γp

1 = 0, γf
2 = 1, γp

2 = 1 +H/h. Bottom: H
h

= 8

κ ↓ N → 2× 2 4× 4 8× 8

1 9(4.4e+2) 15 (1.8e+3) 22 (7.0e+3)
10−2 7(5.5e+0) 12 (1.9e+1) 16 (7.1e+1)
10−4 7(3.2e+0) 8 (4.6e+0) 8 (4.6e+0)
10−6 7(3.4e+0) 9 (5.7e+0) 10 (6.7e+0)

κ ↓ N → 2× 2 4× 4 8× 8

1 18(3.2e+3) 32(1.3e+4) 40(5.2e+4)
10−2 14(3.3e+1) 24(1.3e+2) 30(5.2e+2)
10−4 10(8.3e+0) 12(1.3e+1) 14(1.7e+1)
10−6 11(8.3e+0) 13(1.2e+1) 15(1.5e+1)

In our first experiment we fix H/h = 4 or H/h = 8 and run CG and PCG for
different values of H = H f = Hp and different values of κ. See Table 1 for the
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FETI-DP method with and without a preconditioner. We observe the preconditioned
FETI-DP method with γf1 = 0, γp1 = 1, γp2 = 0 and γf2 = 0 is robust with respect to
the number of subdomains and size of the subdomains when the κ is not very small.
We repeat the experiment above with γ f1 = 0, γp1 = 0, γf2 = 0 and γp2 = 1 +H/h
and present the number of iterations and estimate condition numbers in Table 2. With
this choice of paramenters we obtain a robust preconditioner for κ small. Analysis
of the FETI-DP methods presented here as well as the design of more sophisticated
FETI-DP solvers are currently being studied by the authors.
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